Skip to content

Commit

Permalink
Merge pull request #90 from petrobras/documentation_improvements
Browse files Browse the repository at this point in the history
Add 12 citations and update 1 citation
  • Loading branch information
ricardoevvargas authored Nov 28, 2023
2 parents b2a6ad3 + 671a674 commit 101a1ea
Show file tree
Hide file tree
Showing 2 changed files with 25 additions and 1 deletion.
26 changes: 25 additions & 1 deletion LIST_OF_CITATIONS.md
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ Journal of Computational and Applied Mathematics. 2020. https://doi.org/10.1016/

1. A.V.S. Alves. Sensores virtuais baseados em aprendizado de máquina para poços de petróleo. Universidade de Brasília. Final Graduation Project. 2023. https://github.com/petrobras/3W/raw/main/docs/final_graduation_project_arthur_alves.pdf.

1. R. Schena. A methodology for synthetic generation of failure data for data-driven prognostics and health management (PHM) modeling for digital twins. Universidade Federal do Rio Grande do Sul. Master's degree dissertation. 2023. No link yet.
1. R. Schena. A methodology for synthetic generation of failure data for data-driven prognostics and health management (PHM) modeling for digital twins. Universidade Federal do Rio Grande do Sul. Master's degree dissertation. 2023. https://lume.ufrgs.br/handle/10183/267589.

1. R. Salles, J. Lima, R. Coutinho, E. Pacitti, F. Masseglia, R. Akbarinia, C. Chen, J. Garibaldi, F. Porto, E. Ogasawara. SoftED: Metrics for Soft Evaluation of Time Series Event Detection. arXiv. 2023. https://doi.org/10.48550/arXiv.2304.00439.

Expand All @@ -135,6 +135,30 @@ Journal of Computational and Applied Mathematics. 2020. https://doi.org/10.1016/

1. R.M.F.U. Foronda, V.M. Fracassio, R.B. Santos, B.F. Santos. Statistical Analysis in Database of Offshore Naturally Flowing Wells with Abnormal Events. Chemical Engineering Transactions. 2023. https://doi.org/10.3303/CET2399101.

1. M.A. Sahraoui, C. Rahmoune, M. Zair, F. Gougam, A. Damou. Enhancing fault diagnosis of undesirable events in oil & gas systems: A machine learning approach with new criteria for stability analysis and classification accuracy. Journal of Process Mechanical Engineering. 2023. https://doi.org/10.1177/09544089231213778.

1. W.F. Junior, K.S. Komati, K.A.S. Gazolli. Anomaly detection in oil-producing wells: a comparative study of one-class classifiers in a multivariate time series dataset. Journal of Petroleum Exploration and Production Technology. 2023. https://doi.org/10.1007/s13202-023-01710-6.

1. P.E. Aranha, N.A. Policarpo, M.A. Sampaio. Unsupervised machine learning model for predicting anomalies in subsurface safety valves and application in offshore wells during oil production. Journal of Petroleum Exploration and Production Technology. 2023. https://doi.org/10.1007/s13202-023-01720-4.

1. R.E.V. Vargas, R.L.A. Pinto. The 3W Project and its Strategy to Foster the Development of Data-Driven Solutions for the Offshore Sector. Offshore Technology Conference Brasil. 2023. https://doi.org/10.4043/32875-MS.

1. C. Shyalika, R. Wickramarachchi, A. Sheth. A Comprehensive Survey on Rare Event Prediction. arXiv. 2023. https://doi.org/10.48550/arXiv.2309.11356.

1. M.A. Farahani, M.R. McCormick, R. Harik, T. Wuest. Time-Series Classification in Smart Manufacturing Systems: An Experimental Evaluation of State-of-the-Art Machine Learning Algorithms. arXiv. 2023. https://doi.org/10.48550/arXiv.2310.02812.

1. P.E. Aranha, L.G.O. Lopes, E.S.P. Sobrinho; I.M.N. Oliveira, J.P.N. Araújo, B.B. Santos; E.T.L. Junior, T.B. Silva, T.M.A. Vieira, W.W.M. Lira, N.A. Policarpo, M.A. Sampaio. A System to Detect Oilwell Anomalies Using Deep Learning and Decision Diagram Dual Approach. SPE Journal. 2023. https://doi.org/10.2118/218017-PA.

1. L. Liu, J. Li, Z. Niu, W. Zhang, J.C. Xue, H. Xu. Efficient Time-Series Data Delivery in IoT with Xender. IEEE Transactions on Mobile Computing. 2023. https://doi.org/10.1109/TMC.2023.3296608.

1. X. Deng; H. Yin. Industrial Process Fault Diagnosis in Case of Missing Sensor Data. Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS). 2023. https://doi.org/10.1109/SAFEPROCESS58597.2023.10295829.

1. Y. Li. Predictive Analysis and Critical Event Monitoring in Large Dynamic Networks. University of Massachusetts Lowell. Doctoral thesis. 2023. https://github.com/petrobras/3W/raw/main/docs/doctoral_thesis_yan_li.pdf.

1. A. Das, A. Aiken. Prolego: Time-Series Analysis for Predicting Failures in Complex Systems. IEEE International Conference on Autonomic Computing and Self-Organizing Systems - ACSOS. 2023. http://theory.stanford.edu/~aiken/publications/papers/ascos23.pdf.

1. Y. Qu, B. Zhou, A. Waaler, D. Cameron. Real-Time Event Detection with Random Forests and Temporal Convolutional Networks for More Sustainable Petroleum Industry. 2024. Lecture Notes in Computer Science.

Preprint articles

1. R. Schena, J.C. Netto, J.L. Carbonera, M. Abel. A Methodology for Synthetic Failure Data Generation in Digital Twins for Data-Driven Prognostics and Health Management (PHM) Models. Social Science Research Network. 2023. https://dx.doi.org/10.2139/ssrn.4334023.
Binary file added docs/doctoral_thesis_yan_li.pdf
Binary file not shown.

0 comments on commit 101a1ea

Please sign in to comment.