Skip to content

pimdh/lie-vae

Repository files navigation

Code for "Explorations in Homeomorphic Variational Auto-Encoding"

by Luca Falorsi*, Pim de Haan*, Tim R. Davidson*, Nicola De Cao, Maurice Weiler, Patrick Forré and Taco S. Cohen.

Link to paper Animated results

The relevant code to implement SO(3) valued latent variables can be found in the lie_vae package. The code needed to reproduce the experiments can be found in lie_vae.experiments.

For questions file an issue or email to either:

Dependencies

conda install -y pytorch torchvision cuda91 -c pytorch
conda install -y numpy ipython jupyter tensorflow pillow cython scipy requests
pip install tensorboardX tqdm git+https://github.com/AMLab-Amsterdam/lie_learn \
    git+https://github.com/pimdh/svae-temp.git 

The sphere cube data can be generated with the python -m lie_vae.experiments.gen_spherecube_pairs (see file for details, this requires having installed Blender 2.79b) or for limited time be downloaded here.

About

VAEs with Lie Group latent space

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •