CSV sink lets you consume the output of a substreams module and write it into CSV files.
$ npm install -g substreams-sink-csv
There are two ways to write your substreams module output into CSV file:
- using untyped
graph_out
/db_out
modules producingEntityChanges
/DatabaseChanges
outputs, and a schema defined in SQL file. - using any map module output, in which case the sink will use the types defined in the packaged
.proto
definitions.
-
Make sure your substreams package has
graph_out
/db_out
withEntityChanges
/DatabaseChanges
output. -
Define a schema
schema.sql
CREATE TABLE block_meta ( block_num BIGINT, timestamp TIMESTAMP, id TEXT, hash TEXT, parent_hash TEXT );
The tables and fields must match the entities and fields created in the
graph_out
/db_out
module. Note, you can use additional field names in your schema to enrich your rows from the stream metadata. The following field names can be used to expand the schema:id
(String)block_number
(UInt64)block
block_num
block_id
(String)cursor
(String)timestamp
(DateTime)seconds
(Int64)nanos
(Int32)nanoseconds
milliseconds
(Int64)millis
operation
(String)
-
Start the sink with command line parameters (or ENV variables - see below):
$ substreams-sink-csv \ -e eth.substreams.pinax.network:443 \ --schema schema.example.block_meta.sql \ --module-name graph_out \ --manifest https://spkg.io/streamingfast/substreams-eth-block-meta-v0.4.3.spkg \ --substreams-api-key <your-api-key> -s 10000 \ -t +100
Your module could be producing repeated messages, i.e. have output protobuf definition such as this for example:
message Events {
repeated Transfer transfers = 1;
repeated Mint mints = 2;
}
In this case, you can consume the module directly and the sink will use protobuf definitions to create the columns in your CSV file.
In the example above you will get two CSV files: transfers.csv
and mints.csv
with columns defined in the Transfer
and Mint
messages accordingly.
$ substreams-sink-csv \
-e eth.substreams.pinax.network:443 \
--manifest https://github.com/streamingfast/substreams-uniswap-v3/releases/download/v0.2.8/substreams.spkg \
--module-name map_pools_created \
--substreams-api-key <your-api-key>
-s 12369821 \
-t +100
You can use environment variables instead of the CLI arguments. One way to use them is to provide .env
file. For a full list of environment variables see substreams-sink-csv --help
.
.env
# Substreams Credentials
# https://app.pinax.network
# https://app.streamingfast.io
SUBSTREAMS_API_KEY=<your-api-key>
SUBSTREAMS_ENDPOINT=eth.substreams.pinax.network:443
# Substreams Package
MANIFEST=https://spkg.io/streamingfast/substreams-eth-block-meta-v0.4.3.spkg
MODULE_NAME=graph_out
# Substreams Package (Optional)
START_BLOCK=-7200
FINAL_BLOCKS_ONLY=true
# CSV Input
SCHEMA=schema.example.block_meta.sql
# CSV Output (Optional)
DELIMITER=","
FILENAME="data.csv"
### CSV filename schema
If `FILENAME` is not provided, the CSV output filename is generated using the following pattern:
```yml
<endpoint>-<module_hash>-<module_name>-<entity>.csv
Additionally, *.clock
, *.session
& *.cursor
files are generated to keep track of the last block processed.
Example:
eth.substreams.pinax.network-3b180e1d2390afef1f22651581304e04245ba001-graph_out-block_meta.csv
eth.substreams.pinax.network-3b180e1d2390afef1f22651581304e04245ba001-graph_out.clock
eth.substreams.pinax.network-3b180e1d2390afef1f22651581304e04245ba001-graph_out.cursor
eth.substreams.pinax.network-3b180e1d2390afef1f22651581304e04245ba001-graph_out.session
$ substreams-sink-csv --help
Substreams Sink CSV
Options:
-v, --version version for substreams-sink-csv
-e --substreams-endpoint <string> Substreams gRPC endpoint to stream data from (env: SUBSTREAMS_ENDPOINT)
--manifest <string> URL of Substreams package (env: MANIFEST)
--module-name <string> Name of the output module (declared in the manifest) (env: MODULE_NAME)
-s --start-block <int> Start block to stream from (defaults to -1, which means the initialBlock of the first module you are streaming) (default: "-1", env: START_BLOCK)
-t --stop-block <int> Stop block to end stream at, inclusively (env: STOP_BLOCK)
-p, --params <string...> Set a params for parameterizable modules. Can be specified multiple times. (ex: -p module1=valA -p module2=valX&valY) (default: [], env: PARAMS)
--substreams-api-key <string> API key for the Substream endpoint (env: SUBSTREAMS_API_KEY)
--delay-before-start <int> Delay (ms) before starting Substreams (default: 0, env: DELAY_BEFORE_START)
--cursor <string> Cursor to stream from. Leave blank for no cursor
--production-mode <boolean> Enable production mode, allows cached Substreams data if available (choices: "true", "false", default: false, env: PRODUCTION_MODE)
--final-blocks-only <boolean> Only process blocks that have pass finality, to prevent any reorg and undo signal by staying further away from the chain HEAD (choices: "true", "false", default: false, env: FINAL_BLOCKS_ONLY)
--inactivity-seconds <int> If set, the sink will stop when inactive for over a certain amount of seconds (default: 300, env: INACTIVITY_SECONDS)
--headers [string...] Set headers that will be sent on every requests (ex: --headers X-HEADER=headerA) (default: {}, env: HEADERS)
--plaintext <boolean> Establish GRPC connection in plaintext (choices: "true", "false", default: false, env: PLAIN_TEXT)
--verbose <boolean> Enable verbose logging (choices: "true", "false", default: false, env: VERBOSE)
--filename <string> CSV filename (default: '<endpoint>-<module_hash>-<module_name>.csv') (env: FILENAME)
--schema <string> SQL table schema for CSV (default: "schema.sql", env: SCHEMA)
--delimiter <string> CSV delimiter (default: ",", env: DELIMITER)
-h, --help display help for command
Install pm2
$ npm install -g pm2
$ npm install substreams-sink-csv
ecosystem.config.js
module.exports = {
apps: [{
name: "substreams-sink-csv",
script: "./node_modules/substreams-sink-csv/dist/bin/cli.mjs",
env: {
SUBSTREAMS_API_KEY: '<your-api-key>',
...
}
}]
}
Start the process
$ pm2 start
$ curl https://clickhouse.com/ | sh
Start ClickHouse
$ clickhouse server
Connect to ClickHouse
$ clickhouse client
Create a ClickHouse table
Before importing data, let’s create a table with a relevant structure:
CREATE TABLE block_meta
(
block_num UInt64,
timestamp DateTime,
id String,
hash String,
parent_hash String
)
ENGINE = ReplacingMergeTree()
ORDER BY block_num;
To import data from the CSV file to the
block_meta
table, we can pipe our file directly to the clickhouse-client:
$ clickhouse-client --query="INSERT INTO block_meta FORMAT CSV" < data-block_meta.csv
Note that we use
FORMAT CSV
to let ClickHouse know we’re ingesting CSV formatted data. Alternatively, we can load data from a local file using theFROM INFILE
clause:
INSERT INTO block_meta
FROM INFILE 'data-block_meta.csv'
FORMAT CSV
Query the ClickHouse table
SELECT * FROM block_meta LIMIT 10;
┌─block_num─┬───────────timestamp─┬─id────────────────┬─hash─────────────────────────────────────────┬─parent_hash──────────────────────────────────┐
│ 2 │ 2015-07-30 15:26:57 │ day:last:20150730 │ tJWh1+ZmMVKuknCNpIQzN7lYFGAVooAvQZOkEARGmMk= │ iOltRTe+pNnAXRJUmQezJWHTvzH0Wq5zTNwRnxNAbLY= │
│ 3 │ 2015-07-30 15:27:28 │ day:last:20150730 │ PWEiZgzIJDdvEe6EL4Ot3DUl4t1nVrm88K/6aqiM90E= │ tJWh1+ZmMVKuknCNpIQzN7lYFGAVooAvQZOkEARGmMk= │
│ 4 │ 2015-07-30 15:27:57 │ day:last:20150730 │ I631o74PUjWzaUG8sptiUEJ47Fuc36J3uZK6Sno806I= │ PWEiZgzIJDdvEe6EL4Ot3DUl4t1nVrm88K/6aqiM90E= │
│ 5 │ 2015-07-30 15:28:03 │ day:last:20150730 │ 83xjLTYeCpPwi6KbGixwjZyqPuGdHujSoCYSv/5J8Kk= │ I631o74PUjWzaUG8sptiUEJ47Fuc36J3uZK6Sno806I= │
│ 6 │ 2015-07-30 15:28:27 │ day:last:20150730 │ HxrtjjaUoGdJbCSOYYec2pmwcJod+6zQtpN1DfBrMm4= │ 83xjLTYeCpPwi6KbGixwjZyqPuGdHujSoCYSv/5J8Kk= │
│ 7 │ 2015-07-30 15:28:30 │ day:last:20150730 │ 4MfAtG4Ra4dDVNzm9kuFgb0jkYawPzCpeOPcOGVvcjo= │ HxrtjjaUoGdJbCSOYYec2pmwcJod+6zQtpN1DfBrMm4= │
│ 8 │ 2015-07-30 15:28:32 │ day:last:20150730 │ LOlDQt8Ya6tBZcJoxDq5gtNgyUdPQp/sVWWt/F0fJYs= │ 4MfAtG4Ra4dDVNzm9kuFgb0jkYawPzCpeOPcOGVvcjo= │
│ 9 │ 2015-07-30 15:28:35 │ day:last:20150730 │ mX5Hv0ysUJxid1PAY4WshmZB7G+INzT/eURBEADcV24= │ LOlDQt8Ya6tBZcJoxDq5gtNgyUdPQp/sVWWt/F0fJYs= │
│ 10 │ 2015-07-30 15:28:48 │ day:last:20150730 │ T/SjiyeKtJ93OdOk7U4ScUOGqf33IZLy6PfaeCLxC00= │ mX5Hv0ysUJxid1PAY4WshmZB7G+INzT/eURBEADcV24= │
│ 11 │ 2015-07-30 15:28:56 │ day:last:20150730 │ P151bD78uTCZNht93Q2r/qpZJDlDfByDbkQ8y4HpMkI= │ T/SjiyeKtJ93OdOk7U4ScUOGqf33IZLy6PfaeCLxC00= │
└───────────┴─────────────────────┴───────────────────┴──────────────────────────────────────────────┴──────────────────────────────────────────────┘
10 rows in set. Elapsed: 0.001 sec. Processed 8.19 thousand rows, 1.18 MB (5.51 million rows/s., 793.31 MB/s.)
Pull from GitHub Container registry
docker pull ghcr.io/pinax-network/substreams-sink-csv:latest
Run with .env
file
docker run -it --rm --env-file .env -v $PWD:/home ghcr.io/pinax-network/substreams-sink-csv:latest
Build from source
docker build -t substreams-sink-csv .