The following repository contains code for our paper called "Attack Agnostic Dataset: Towards Generalization and Stabilization of Audio DeepFake Detection".
We base our codebase on WaveFake's repository (commit: d52d51b
).
Download appropriate datasets:
- ASVspoof2019 LA subset,
- FakeAVCeleb,
- WaveFake (along with JSUT and LJSpeech).
The above datasets result in a total of 286,014 samples used in training procedure.
Install required dependencies using:
pip install -r requirements.txt
Both training and evaluation scripts are configured with the use of CLI and .yaml
configuration files. File defines processing applied to raw audio files, as well as used architecture. An example config of LCNN architecture with LFCC frontend looks as follows:
data:
seed: 42
cnn_features_setting:
frontend_algorithm: ["lfcc"] # ["mfcc"] or ["lfcc"] or ["mfcc", "lfcc"] or []
use_spectrogram: False
checkpoint:
# This part is used only in evaluation (each checkpoint is used in eval on corresponding fold).
# To ensure reliable results make sure that the order of checkpoints is correct (i.e. fold_0, fold_1, fold_2)
paths: [
"trained_models/aad__lcnn_fold_0/ckpt.pth",
"trained_models/aad__lcnn_fold_1/ckpt.pth",
"trained_models/aad__lcnn_fold_2/ckpt.pth",
]
model:
name: "lcnn" # {"rawnet", "mesonet_inception", "xception", "lcnn"}
parameters:
input_channels: 1 # 1 for each mfcc and lfcc, 2 for spec
optimizer:
lr: 0.0001
Other example configs are available under configs/training/
To train models use train_models.py
. It trains 3 models basing on Attack Agnostic Dataset. Each model is using different fold of the dataset.
usage: train_models.py [-h] [--asv_path ASV_PATH] [--wavefake_path WAVEFAKE_PATH] [--celeb_path CELEB_PATH] [--config CONFIG] [--amount AMOUNT] [--batch_size BATCH_SIZE] [--epochs EPOCHS] [--ckpt CKPT] [--cpu] [--verbose] [--use_gmm] [--clusters CLUSTERS] [--lfcc]
optional arguments:
-h, --help show this help message and exit
--asv_path ASV_PATH Path to ASVspoof2021 dataset directory
--wavefake_path WAVEFAKE_PATH
Path to WaveFake dataset directory
--celeb_path CELEB_PATH
Path to FakeAVCeleb dataset directory
--config CONFIG Model config file path (default: config.yaml)
--amount AMOUNT, -a AMOUNT
Amount of files to load - useful when debugging (default: None - use all).
--batch_size BATCH_SIZE, -b BATCH_SIZE
Batch size (default: 128).
--epochs EPOCHS, -e EPOCHS
Epochs (default: 5).
--ckpt CKPT Checkpoint directory (default: trained_models).
--cpu, -c Force using cpu?
--verbose, -v Display debug information?
--use_gmm [GMM] Use to train GMM, otherwise - NNs
--clusters CLUSTERS, -k CLUSTERS
[GMM] The amount of clusters to learn (default: 128).
--lfcc, -l [GMM] Use LFCC instead of MFCC?
e.g. to train LCNN network use:
python train_models.py --asv_path ../datasets/ASVspoof2021/LA --wavefake_path ../datasets/WaveFake --celeb_path ../datasets/FakeAVCeleb/FakeAVCeleb_v1.2 --config configs/training/lcnn.yaml
To train GMM models:
python train_models.py --asv_path ../datasets/ASVspoof2021/LA --wavefake_path ../datasets/WaveFake --celeb_path ../datasets/FakeAVCeleb/FakeAVCeleb_v1.2 --lfcc --use_gmm
Once your models are trained you can evalaute them using evaluate_models.py
.
Before you start: add checkpoint paths to the config used in training process.
Note: to make sure that results are realiable, paths should be provided in correct order (fold_1, fold_2, fold_3) - each checkpoint is evaluated on corresponding fold.
usage: evaluate_models.py [-h] [--asv_path ASV_PATH] [--wavefake_path WAVEFAKE_PATH] [--celeb_path CELEB_PATH] [--config CONFIG] [--amount AMOUNT] [--cpu] [--use_gmm] [--clusters CLUSTERS] [--lfcc] [--output OUTPUT] [--ckpt CKPT]
optional arguments:
-h, --help show this help message and exit
--asv_path ASV_PATH
--wavefake_path WAVEFAKE_PATH
--celeb_path CELEB_PATH
--config CONFIG Model config file path (default: config.yaml)
--amount AMOUNT, -a AMOUNT
Amount of files to load from each directory (default: None - use all).
--cpu, -c Force using cpu
--use_gmm [GMM] Use to evaluate GMM, otherwise - NNs
--clusters CLUSTERS, -k CLUSTERS
[GMM] The amount of clusters to learn (default: 128).
--lfcc, -l [GMM] Use LFCC instead of MFCC?
--output OUTPUT, -o OUTPUT
[GMM] Output file name.
--ckpt CKPT [GMM] Checkpoint directory (default: trained_models).
e.g. to evaluate LCNN network add appropriate checkpoint paths to config and then use:
python evaluate_models.py --config configs/training/lcnn.yaml --asv_path ../datasets/ASVspoof2021/LA --wavefake_path ../datasets/WaveFake --celeb_path ../datasets/FakeAVCeleb/FakeAVCeleb_v1.2
To evaluate GMM models:
python evaluate_models.py --asv_path ../datasets/ASVspoof2021/LA --wavefake_path ../datasets/WaveFake --celeb_path ../datasets/FakeAVCeleb/FakeAVCeleb_v1.2 --lfcc --use_gmm
If you use this code in your research please use the following citation:
@inproceedings{kawa22_interspeech,
author={Piotr Kawa and Marcin Plata and Piotr Syga},
title={{Attack Agnostic Dataset: Towards Generalization and Stabilization of Audio DeepFake Detection}},
year=2022,
booktitle={Proc. Interspeech 2022},
pages={4023--4027},
doi={10.21437/Interspeech.2022-10078}
}