Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Wrapper for Varembed Models #1067

Merged
merged 23 commits into from
Feb 6, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
829c683
Added initial draft of varembed wrapper
anmolgulati Dec 30, 2016
f62e41a
Fixed pep8 errors
anmolgulati Dec 30, 2016
88e1324
Merge branch 'develop' into varembed-worker
anmolgulati Dec 30, 2016
c9abe31
Removed redundant code
anmolgulati Dec 30, 2016
66365f6
Merge branch 'varembed-worker' of https://github.com/anmol01gulati/ge…
anmolgulati Dec 30, 2016
a488723
Merge branch 'develop' into varembed-worker
anmolgulati Jan 25, 2017
345e184
Made changes to Varembed Class. Also added more comments.
anmolgulati Jan 26, 2017
9903a02
Added tests for varembed wrapper. Also added pre-trained varembed mod…
anmolgulati Jan 28, 2017
cc4a549
Added varembed wrapper in init.py
anmolgulati Jan 28, 2017
1be271e
Merge branch 'develop' into varembed-worker
anmolgulati Jan 28, 2017
4f11aeb
Changed default value of morphessor flag
anmolgulati Jan 28, 2017
77db09b
Merge branch 'varembed-worker' of https://github.com/anmol01gulati/ge…
anmolgulati Jan 28, 2017
6034e68
Moved import morfessor into method to avoid circular dependency
anmolgulati Jan 28, 2017
cadccd4
Added KeyedVectors as subclass. Also added more tests. Changed morfes…
anmolgulati Feb 1, 2017
5777fe7
Added exception when importing morfessor in Python 2.6 or earlier as …
anmolgulati Feb 1, 2017
bf57058
Added test to check exception in ensemble method for Python 2.6
anmolgulati Feb 1, 2017
3095620
Added Varembed RST files and updated apiref.rst
anmolgulati Feb 1, 2017
dbb969b
Refactored method names. Also reverted back to 140 characters per lin…
anmolgulati Feb 2, 2017
74e3b12
Added Varembed IPython Notebook Tutorial
anmolgulati Feb 2, 2017
53889e5
Renamed method to test add_morphemes_to_embeddings
anmolgulati Feb 3, 2017
6e7f681
Fixed code style. Alinged to hanging indent
anmolgulati Feb 5, 2017
cee0410
fixed code style
anmolgulati Feb 6, 2017
3d0c74d
Updated comments
anmolgulati Feb 6, 2017
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -21,5 +21,6 @@ install:
- pip install annoy
- pip install testfixtures
- pip install unittest2
- pip install Morfessor==2.0.2a4
- python setup.py install
script: python setup.py test
163 changes: 163 additions & 0 deletions docs/notebooks/Varembed.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# VarEmbed Tutorial\n",
"\n",
"Varembed is a word embedding model incorporating morphological information, capturing shared sub-word features. Unlike previous work that constructs word embeddings directly from morphemes, varembed combines morphological and distributional information in a unified probabilistic framework. Varembed thus yields improvements on intrinsic word similarity evaluations. Check out the original paper, [arXiv:1608.01056](https://arxiv.org/abs/1608.01056) accepted in [EMNLP 2016](http://www.emnlp2016.net/accepted-papers.html).\n",
"\n",
"Varembed is now integrated into [Gensim](http://radimrehurek.com/gensim/) providing ability to load already trained varembed models into gensim with additional functionalities over word vectors already present in gensim.\n",
"\n",
"# This Tutorial\n",
"\n",
"In this tutorial you will learn how to train, load and evaluate varembed model on your data.\n",
"\n",
"# Train Model\n",
"\n",
"The authors provide their code to train a varembed model. Checkout the repository [MorphologicalPriorsForWordEmbeddings](https://github.com/rguthrie3/MorphologicalPriorsForWordEmbeddings) for to train a varembed model. You'll need to use that code if you want to train a model. \n",
"\n",
"# Load Varembed Model\n",
"\n",
"Now that you have an already trained varembed model, you can easily load the varembed word vectors directly into Gensim. <br>\n",
"For that, you need to provide the path to the word vectors pickle file generated after you train the model and run the script to [package varembed embeddings](https://github.com/rguthrie3/MorphologicalPriorsForWordEmbeddings/blob/master/package_embeddings.py) provided in the [varembed source code repository](https://github.com/rguthrie3/MorphologicalPriorsForWordEmbeddings).\n",
"\n",
"We'll use a varembed model trained on [Lee Corpus](https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/test/test_data/lee.cor) as the vocabulary, which is already available in gensim.\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from gensim.models.wrappers import varembed\n",
"\n",
"vector_file = '../../gensim/test/test_data/varembed_leecorpus_vectors.pkl'\n",
"model = varembed.VarEmbed.load_varembed_format(vectors=vector_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This loads a varembed model into Gensim. Also if you want to load with morphemes added into the varembed vectors, you just need to also provide the path to the trained morfessor model binary as an argument. This works as an optional parameter, if not provided, it would just load the varembed vectors without morphemes."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"morfessor_file = '../../gensim/test/test_data/varembed_leecorpus_morfessor.bin'\n",
"model_with_morphemes = varembed.VarEmbed.load_varembed_format(vectors=vector_file, morfessor_model=morfessor_file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This helps load trained varembed models into Gensim. Now you can use this for any of the Keyed Vector functionalities, like 'most_similar', 'similarity' and so on, already provided in gensim. \n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[(u'launch', 0.2694973647594452),\n",
" (u'again', 0.2564533054828644),\n",
" (u'gun', 0.2521245777606964),\n",
" (u'response', 0.24817466735839844),\n",
" (u'swimming', 0.23348823189735413),\n",
" (u'bombings', 0.23146548867225647),\n",
" (u'transformed', 0.2289058119058609),\n",
" (u'used', 0.2224646955728531),\n",
" (u'weeks,', 0.21905183792114258),\n",
" (u'scheduled', 0.2170265018939972)]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.most_similar('government')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"0.022313305789051038"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.similarity('peace', 'grim')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Conclusion\n",
"In this tutorial, we learnt how to load already trained varembed models vectors into gensim and easily use and evaluate it. That's it!\n",
"\n",
"# Resources\n",
"\n",
"* [Varembed Source Code](https://github.com/rguthrie3/MorphologicalPriorsForWordEmbeddings)\n",
"* [Gensim](http://radimrehurek.com/gensim/)\n",
"* [Lee Corpus](https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/test/test_data/lee.cor)\n"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
1 change: 1 addition & 0 deletions docs/src/apiref.rst
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@ Modules:
models/wrappers/dtmmodel
models/wrappers/ldavowpalwabbit.rst
models/wrappers/wordrank
models/wrappers/varembed
similarities/docsim
similarities/index
topic_coherence/aggregation
Expand Down
9 changes: 9 additions & 0 deletions docs/src/models/wrappers/varembed.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
:mod:`models.wrappers.varembed` -- VarEmbed Word Embeddings
================================================================================================

.. automodule:: gensim.models.wrappers.varembed
:synopsis: VarEmbed Word Embeddings
:members:
:inherited-members:
:undoc-members:
:show-inheritance:
1 change: 1 addition & 0 deletions gensim/models/wrappers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,4 @@
from .ldavowpalwabbit import LdaVowpalWabbit
from .fasttext import FastText
from .wordrank import Wordrank
from .varembed import VarEmbed
112 changes: 112 additions & 0 deletions gensim/models/wrappers/varembed.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright (C) 2017 Anmol Gulati <anmol01gulati@gmail.com>
# Copyright (C) 2017 Radim Rehurek <radimrehurek@seznam.cz>

"""
Python wrapper around word representation learning from Varembed models, a library for efficient learning of word representations
and sentence classification [1].

This module allows ability to obtain word vectors for out-of-vocabulary words, for the Varembed model[2].

The wrapped model can not be updated with new documents for online training.

.. [1] https://github.com/rguthrie3/MorphologicalPriorsForWordEmbeddings

.. [2] http://arxiv.org/pdf/1608.01056.pdf
"""

import logging
import sys

import numpy as np

from gensim.models.keyedvectors import KeyedVectors

# utility fnc for pickling, common scipy operations etc
from gensim import utils
from gensim.models.word2vec import Vocab

logger = logging.getLogger(__name__)


class VarEmbed(KeyedVectors):
"""
Class for word vectors using Varembed models. Contains methods to load a varembed model and implements
functionality like `most_similar`, `similarity` by extracting vectors into numpy matrix.
Refer to [Varembed]https://github.com/rguthrie3/MorphologicalPriorsForWordEmbeddings for
implementation of Varembed models.
"""

def __init__(self):
self.vector_size = 0
self.vocab_size = 0

@classmethod
def load_varembed_format(cls, vectors, morfessor_model=None):
"""
Load the word vectors into matrix from the varembed output vector files.
Using morphemes requires Python 2.7 version or above.

'vectors' is the pickle file containing the word vectors.
'morfessor_model' is the path to the trained morfessor model.
'use_morphemes' False(default) use of morpheme embeddings in output.
"""
result = cls()
if vectors is None:
raise Exception("Please provide vectors binary to load varembed model")
D = utils.unpickle(vectors)
word_to_ix = D['word_to_ix']
morpho_to_ix = D['morpho_to_ix']
word_embeddings = D['word_embeddings']
morpho_embeddings = D['morpheme_embeddings']
result.load_word_embeddings(word_embeddings, word_to_ix)
if morfessor_model:
if sys.version_info >= (2, 7): #Morfessor is only supported for Python 2.7 and above.
try:
import morfessor
morfessor_model = morfessor.MorfessorIO().read_binary_model_file(morfessor_model)
result.add_morphemes_to_embeddings(morfessor_model, morpho_embeddings, morpho_to_ix)
except ImportError:
# Morfessor Package not found.
logger.error('Could not import morfessor. Not using morpheme embeddings')
raise ImportError('Could not import morfessor.')
else:
# Raise exception in Python 2.6 or earlier.
raise Exception('Using Morphemes requires Python 2.7 and above. Morfessor is not supported in python 2.6')

logger.info('Loaded varembed model vectors from %s', vectors)
return result

def load_word_embeddings(self, word_embeddings, word_to_ix):
""" Loads the word embeddings """
logger.info("Loading the vocabulary")
self.vocab = {}
self.index2word = []
counts = {}
for word in word_to_ix:
counts[word] = counts.get(word, 0) + 1
self.vocab_size = len(counts)
self.vector_size = word_embeddings.shape[1]
self.syn0 = np.zeros((self.vocab_size, self.vector_size))
self.index2word = [None]*self.vocab_size
logger.info("Corpus has %i words", len(self.vocab))
for word_id, word in enumerate(counts):
self.vocab[word] = Vocab(index=word_id, count=counts[word])
self.syn0[word_id] = word_embeddings[word_to_ix[word]]
self.index2word[word_id] = word
assert((len(self.vocab), self.vector_size) == self.syn0.shape)
logger.info("Loaded matrix of %d size and %d dimensions", self.vocab_size, self.vector_size)


def add_morphemes_to_embeddings(self, morfessor_model, morpho_embeddings, morpho_to_ix):
""" Method to include morpheme embeddings into varembed vectors
Allowed only in Python versions 2.7 and above.
"""
for word in self.vocab:
morpheme_embedding = np.array(
[morpho_embeddings[morpho_to_ix.get(m, -1)] for m in morfessor_model.viterbi_segment(word)[0]]).sum(axis=0)
self.syn0[self.vocab[word].index] += morpheme_embedding
logger.info("Added morphemes to word vectors")

Binary file not shown.
Loading