forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
link_prediction.py
198 lines (166 loc) · 6.59 KB
/
link_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import io
import random
import time
import argparse
from functools import partial
import numpy as np
import yaml
import paddle
import pgl
from easydict import EasyDict as edict
from paddlenlp.transformers import ErnieTokenizer, ErnieTinyTokenizer
from paddlenlp.utils.log import logger
from models import ErnieSageForLinkPrediction
from data import TrainData, PredictData, GraphDataLoader, batch_fn
MODEL_CLASSES = {
"ernie-tiny": (ErnieSageForLinkPrediction, ErnieTinyTokenizer),
"ernie-1.0": (ErnieSageForLinkPrediction, ErnieTokenizer),
}
def set_seed(config):
random.seed(config.seed)
np.random.seed(config.seed)
paddle.seed(config.seed)
def load_data(graph_data_path):
base_graph = pgl.Graph.load(graph_data_path)
term_ids = np.load(
os.path.join(graph_data_path, "term_ids.npy"), mmap_mode="r")
return base_graph, term_ids
def do_train(config):
paddle.set_device(config.device)
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(config)
base_graph, term_ids = load_data(config.graph_work_path)
collate_fn = partial(
batch_fn,
samples=config.samples,
base_graph=base_graph,
term_ids=term_ids)
mode = 'train'
train_ds = TrainData(config.graph_work_path)
model_class, tokenizer_class = MODEL_CLASSES[config.model_name_or_path]
tokenizer = tokenizer_class.from_pretrained(config.model_name_or_path)
config.cls_token_id = tokenizer.cls_token_id
model = model_class.from_pretrained(
config.model_name_or_path, config=config)
model = paddle.DataParallel(model)
train_loader = GraphDataLoader(
train_ds,
batch_size=config.batch_size,
shuffle=True,
num_workers=config.sample_workers,
collate_fn=collate_fn)
optimizer = paddle.optimizer.Adam(
learning_rate=config.lr, parameters=model.parameters())
rank = paddle.distributed.get_rank()
global_step = 0
tic_train = time.time()
for epoch in range(config.epoch):
for step, (graphs, datas) in enumerate(train_loader):
global_step += 1
loss, outputs = model(graphs, datas)
if global_step % config.log_per_step == 0:
logger.info(
"global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
% (global_step, epoch, step, loss,
config.log_per_step / (time.time() - tic_train)))
tic_train = time.time()
loss.backward()
optimizer.step()
optimizer.clear_grad()
if global_step % config.save_per_step == 0:
if rank == 0:
output_dir = os.path.join(config.output_path,
"model_%d" % global_step)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model._layers.save_pretrained(output_dir)
if rank == 0:
output_dir = os.path.join(config.output_path, "last")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model._layers.save_pretrained(output_dir)
def tostr(data_array):
return " ".join(["%.5lf" % d for d in data_array])
@paddle.no_grad()
def do_predict(config):
paddle.set_device(config.device)
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(config)
mode = 'predict'
num_nodes = int(
np.load(os.path.join(config.graph_work_path, "num_nodes.npy")))
base_graph, term_ids = load_data(config.graph_work_path)
collate_fn = partial(
batch_fn,
samples=config.samples,
base_graph=base_graph,
term_ids=term_ids)
model_class, tokenizer_class = MODEL_CLASSES[config.model_name_or_path]
tokenizer = tokenizer_class.from_pretrained(config.model_name_or_path)
config.cls_token_id = tokenizer.cls_token_id
model = model_class.from_pretrained(config.infer_model, config=config)
model = paddle.DataParallel(model)
predict_ds = PredictData(num_nodes)
predict_loader = GraphDataLoader(
predict_ds,
batch_size=config.infer_batch_size,
shuffle=True,
num_workers=config.sample_workers,
collate_fn=collate_fn)
trainer_id = paddle.distributed.get_rank()
id2str = io.open(
os.path.join(config.graph_work_path, "terms.txt"),
encoding=config.encoding).readlines()
if not os.path.exists(config.output_path):
os.mkdir(config.output_path)
fout = io.open(
"%s/part-%s" % (config.output_path, trainer_id), "w", encoding="utf8")
global_step = 0
epoch = 0
tic_train = time.time()
model.eval()
for step, (graphs, datas) in enumerate(predict_loader):
global_step += 1
loss, outputs = model(graphs, datas)
for user_feat, user_real_index in zip(outputs[0].numpy(),
outputs[3].numpy()):
sri = id2str[int(user_real_index)].strip("\n")
line = "{}\t{}\n".format(sri, tostr(user_feat))
fout.write(line)
if global_step % config.log_per_step == 0:
logger.info(
"predict step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
% (global_step, epoch, step, loss,
config.log_per_step / (time.time() - tic_train)))
tic_train = time.time()
fout.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='main')
parser.add_argument("--conf", type=str, default="./config.yaml")
parser.add_argument("--do_predict", action='store_true', default=False)
args = parser.parse_args()
config = edict(yaml.load(open(args.conf), Loader=yaml.FullLoader))
assert config.device in [
"gpu", "cpu"
], "Device should be gpu/cpu, but got %s." % config.device
logger.info(config)
if args.do_predict:
do_predict(config)
else:
do_train(config)