Skip to content

Commit

Permalink
Update 2-case2.tex
Browse files Browse the repository at this point in the history
  • Loading branch information
pitmonticone committed Apr 9, 2024
1 parent 2b72c40 commit 4898fb9
Showing 1 changed file with 18 additions and 18 deletions.
36 changes: 18 additions & 18 deletions blueprint/src/chapters/2-case2.tex
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@ \chapter*{Case 2}
\label{lmm:three_dvd_gcd_of_dvd_a_of_dvd_b}
\lean{three_dvd_gcd_of_dvd_a_of_dvd_b}
\leanok
%\uses{}
Let $a, b, c \in \N$. \\
Let $3 \divides a$ and $3 \divides b$. \\
Let $a ^ 3 + b ^ 3 = c ^ 3$. \\\\
Expand Down Expand Up @@ -34,9 +33,10 @@ \chapter*{Case 2}
\label{lmm:three_dvd_gcd_of_dvd_b_of_dvd_c}
\lean{three_dvd_gcd_of_dvd_b_of_dvd_c}
\leanok
%\uses{}
Let $a, b, c \in \N$. \\
If $3 \divides b$ and $3 \divides c$ and $a ^ 3 + b ^ 3 = c ^ 3$, then $3 \divides \gcd(\set{a, b, c})$.
Let $3 \divides b$ and $3 \divides c$. \\
Let $a ^ 3 + b ^ 3 = c ^ 3$. \\\\
Then $3 \divides \gcd(\set{a, b, c})$.
\end{lemma}
\begin{proof}
\leanok
Expand All @@ -63,16 +63,20 @@ \chapter*{Case 2}
}
\end{proof}

Let $K$ be a number field (cyclotomic extension $\Q[e^{\frac{2\pi i}{3}}]$). \\
Let $\cc{O}_K$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $\zeta \in K$ be any primitive $3$-rd root of unity. \\
Let $\eta \in \cc{O}_K$ be the element corresponding to $\zeta \in K$. \\
Let $\lambda \in \cc{O}_K$ be such that $\lambda = \eta -1$. \\
Let $u \in \cc{O}^\times_K$.

\begin{definition}[Solution']
\label{def:Solution1}
\lean{Solution'}
\leanok
Let $K$ be a number field. \\
Let $\cc{O}_K$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $a, b, c \in \cc{O}_K$ such that $\lambda \notdivides a$,
$\lambda \notdivides b$, $\lambda \divides c$, $c \neq 0$ and $\gcd(a,b)=1$.\\
Let $u \in \cc{O}^\times_K$. \\\\
Let $a, b, c \in \cc{O}_K$ such that $c \neq 0$ and $\gcd(a,b)=1$.\\
Let $\lambda \notdivides a$, $\lambda \notdivides b$ and $\lambda \divides c$. \\\\
A $\boldsymbol{solution'}$ is a tuple $(a, b, c, u)$
satisfying the equation $a^3 + b^3 = u \cdot c^3.$
\end{definition}
Expand All @@ -81,15 +85,11 @@ \chapter*{Case 2}
\label{def:Solution}
\lean{Solution}
\leanok
Let $K$ be a number field. \\
Let $\cc{O}_K$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $a, b, c \in \cc{O}_K$ such that $\lambda \notdivides a$,
$\lambda \notdivides b$, $\lambda \divides c$, $c \neq 0$, $\gcd(a,b)=1$
and $\lambda^2 \divides a+b$. \\
Let $u \in \cc{O}^\times_K$. \\\\
Let $a, b, c \in \cc{O}_K$ such that $c \neq 0$ and $\gcd(a,b)=1$.\\
Let $\lambda \notdivides a$, $\lambda \notdivides b$, $\lambda \divides c$ and
$\lambda^2 \divides a+b$. \\\\
A $\boldsymbol{solution}$ is a tuple $(a, b, c, u)$
satisfying the equation $a^3 + b^3 = u \cdot c^3.$
satisfying the equation $a^3 + b^3 = u \cdot c^3$.
\end{definition}

\begin{lemma}
Expand Down Expand Up @@ -693,7 +693,7 @@ \chapter*{Case 2}
Let $\cc{O}_K$ be the ring of integers of $K$. \\
Let $\cc{O}^\times_K$ be the group of units of $\cc{O}_K$. \\
Let $a, b, c \in \cc{O}_K$ such that $c \neq 0$ and $\gcd(a,b)=1$. \\
Let $u \in \cc{O}^\times_K$ \\
Let $u \in \cc{O}^\times_K$. \\
Let $\lambda \notdivides a$, $\lambda \notdivides b$ and $\lambda \divides c$. \\\\
Then $a^3 + b^3 \neq u \cdot c^3$.
\end{theorem}
Expand Down

0 comments on commit 4898fb9

Please sign in to comment.