Skip to content

Commit

Permalink
Update 2-case2.tex
Browse files Browse the repository at this point in the history
  • Loading branch information
pitmonticone committed Apr 10, 2024
1 parent 408ada1 commit 60635ed
Showing 1 changed file with 33 additions and 3 deletions.
36 changes: 33 additions & 3 deletions blueprint/src/chapters/2-case2.tex
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ \chapter*{Case 2}
\leanok
Let $a, b, c \in \cc{O}_K$ such that $c \neq 0$ and $\gcd(a,b)=1$.\\
Let $\lambda \notdivides a$, $\lambda \notdivides b$ and $\lambda \divides c$. \\\\
A $\boldsymbol{solution'}$ is a tuple $(a, b, c, u)$
A $\boldsymbol{solution'}$ is a tuple $S'=(a, b, c, u)$
satisfying the equation $a^3 + b^3 = u \cdot c^3.$
\end{definition}

Expand All @@ -84,16 +84,31 @@ \chapter*{Case 2}
Let $a, b, c \in \cc{O}_K$ such that $c \neq 0$ and $\gcd(a,b)=1$.\\
Let $\lambda \notdivides a$, $\lambda \notdivides b$, $\lambda \divides c$ and
$\lambda^2 \divides a+b$. \\\\
A $\boldsymbol{solution}$ is a tuple $(a, b, c, u)$
A $\boldsymbol{solution}$ is a tuple $S=(a, b, c, u)$
satisfying the equation $a^3 + b^3 = u \cdot c^3$.
\end{definition}

% /-- Given `S' : Solution'`, `S'.multiplicity` is the multiplicity of `λ` in `S'.c`, as a natural
% number. -/
% noncomputable
% def Solution'.multiplicity :=
% (_root_.multiplicity (hζ.toInteger - 1) S'.c).get (multiplicity_lambda_c_finite S')

% /-- Given `S : Solution`, `S.multiplicity` is the multiplicity of `λ` in `S.c`, as a natural
% number. -/
% noncomputable
% def Solution.multiplicity := S.toSolution'.multiplicity

% /-- We say that `S : Solution` is minimal if for all `S₁ : Solution`, the multiplicity of `λ` in
% `S.c` is less or equal than the multiplicity in `S'.c`. -/
% def Solution.isMinimal : Prop := ∀ (S₁ : Solution), S.multiplicity ≤ S₁.multiplicity

\begin{lemma}
\label{lmm:Solution1.multiplicity_lambda_c_finite}
\lean{Solution'.multiplicity_lambda_c_finite}
\leanok
\uses{def:Solution1}
% TODO
% For any `S' : Solution'`, the multiplicity of `λ` in `S'.c` is finite.
\end{lemma}
\begin{proof}
\leanok
Expand All @@ -106,6 +121,7 @@ \chapter*{Case 2}
\lean{Solution.exists_minimal}
\leanok
\uses{def:Solution}
% If there is a solution then there is a minimal one.
\end{lemma}
\begin{proof}
\leanok
Expand All @@ -117,6 +133,8 @@ \chapter*{Case 2}
\lean{a_cube_b_cube_same_congr}
\leanok
\uses{def:Solution1}
% Given `S : Solution'`, then `S.a` and `S.b`
% are both congruent to `1` modulo `λ ^ 4` or are both congruent to `-1`.
\end{lemma}
\begin{proof}
\leanok
Expand All @@ -130,6 +148,7 @@ \chapter*{Case 2}
\lean{lambda_pow_four_dvd_c_cube}
\leanok
\uses{def:Solution1}
% Given `S : Solution'`, we have that `λ ^ 4` divides `S.c ^ 3`.
\end{lemma}
\begin{proof}
\leanok
Expand All @@ -141,6 +160,7 @@ \chapter*{Case 2}
\lean{lambda_pow_two_dvd_c}
\leanok
\uses{def:Solution1}
% Given `S : Solution'`, we have that `λ ^ 2` divides `S.c`.
\end{lemma}
\begin{proof}
\leanok
Expand All @@ -154,6 +174,7 @@ \chapter*{Case 2}
\lean{Solution'.two_le_multiplicity}
\leanok
\uses{def:Solution1}
% Given `S : Solution'`, we have that `2 ≤ S.multiplicity`.
\end{lemma}
\begin{proof}
\leanok
Expand All @@ -165,6 +186,7 @@ \chapter*{Case 2}
\lean{Solution.two_le_multiplicity}
\leanok
\uses{def:Solution}
% Given `S : Solution`, we have that `2 ≤ S.multiplicity`.
\end{lemma}
\begin{proof}
\leanok
Expand All @@ -176,6 +198,7 @@ \chapter*{Case 2}
\lean{cube_add_cube_eq_mul}
\leanok
\uses{def:Solution1}
% Given `S : Solution'`, the key factorization of `S.a ^ 3 + S.b ^ 3`.
\end{lemma}
\begin{proof}
\leanok
Expand All @@ -187,6 +210,8 @@ \chapter*{Case 2}
\lean{lambda_sq_dvd_or_dvd_or_dvd}
\leanok
\uses{def:Solution1}
% Given `S : Solution'`, we have that `λ ^ 2`
% divides one amongst `S.a + S.b ∨ λ ^ 2`, `S.a + η * S.b` and `S.a + η ^ 2 * S.b`.
\end{lemma}
\begin{proof}
\leanok
Expand All @@ -199,6 +224,8 @@ \chapter*{Case 2}
\lean{ex_dvd_a_add_b}
\leanok
\uses{def:Solution1}
% Given `S : Solution'`, we may assume that `λ ^ 2` divides
% `S.a + S.b ∨ λ ^ 2` (see also the result below).
\end{lemma}
\begin{proof}
\leanok
Expand All @@ -210,6 +237,8 @@ \chapter*{Case 2}
\lean{exists_Solution_of_Solution'}
\leanok
\uses{def:Solution1, def:Solution}
% Given `S : Solution'`, then there is `S₁ : Solution` such that
% `S₁.multiplicity = S.multiplicity`.
\end{lemma}
\begin{proof}
\leanok
Expand All @@ -221,6 +250,7 @@ \chapter*{Case 2}
\lean{Solution.lambda_ne_zero}
\leanok
\uses{def:Solution}
% Given `S : Solution`, we have that `λ` is non-zero.
\end{lemma}
\begin{proof}
\leanok
Expand Down

0 comments on commit 60635ed

Please sign in to comment.