With its use seen in critical areas of safety and security, it is essential for lithium-ion batteries to be reliable. Prediction of the Remaining Useful Life (RUL) can give insights into the health of the battery. Variations of Recurrent Neural Networks (RNN) are employed to learn the capacity degradation trajectories of lithium-ion batteries. Using several regressor models as the baseline, an ensemble of RNNs is created to overcome the shortcomings of one RNN over the other. The critical point approach and the data-driven approach for regressor models and neural network models respectively help predict the RUL.
Experiment | Model | Training RMSE | Testing RMSE | Validation RMSE |
---|---|---|---|---|
Experiment 1 | LSTM | 0.0312 | 0.0304 | 0.0311 |
BiLSTM | 0.287 | 0.2792 | 0.3259 | |
GRU | 0.0278 | 0.0342 | 0.0356 | |
BiGRU | 0.0901 | 0.0945 | 0.1059 | |
Experiment 2 | LSTM | 0.019 | 0.0173 | 0.0122 |
BiLSTM | 0.5521 | 0.1376 | 0.4871 | |
GRU | 0.0962 | 0.0868 | 0.1957 | |
BiGRU | 1.568 | 1.3482 | 1.7741 | |
Experiment 3 | LSTM | 0.0183 | 0.0336 | 0.0542 |
BiLSTM | 0.107 | 0.1108 | 0.1237 | |
GRU | 0.029 | 0.0425 | 0.0516 | |
BiGRU | 0.034 | 0.0454 | 0.053 | |
Experiment 4 | LSTM | 0.0248 | 0.0236 | 0.0232 |
BiLSTM | 0.2583 | 0.2232 | 0.1943 | |
GRU | 0.0152 | 0.0242 | 0.0452 | |
BiGRU | 0.2186 | 0.2282 | 0.1775 | |
Experiment 5 | LSTM | 0.0145 | 0.0981 | 0.1329 |
BiLSTM | 1.2602 | 1.1037 | 0.9943 | |
GRU | 0.0253 | 0.0811 | 0.1761 | |
BiGRU | 0.3437 | 0.4544 | 0.4535 | |
Experiment 6 | LSTM | 0.0123 | 0.0189 | 0.0277 |
BiLSTM | 0.7338 | 0.6262 | 0.6111 | |
GRU | 0.0967 | 0.1094 | 0.2436 | |
BiGRU | 0.138 | 0.2562 | 0.2627 | |
Experiment 7 | LSTM | 0.0132 | 0.0253 | 0.0245 |
BiLSTM | 0.2486 | 0.3564 | 0.3278 | |
GRU | 0.0578 | 0.0645 | 0.0689 | |
BiGRU | 0.1896 | 0.2486 | 0.2156 | |
Experiment 8 | LSTM | 0.0226 | 0.0356 | 0.0312 |
BiLSTM | 0.227 | 0.2792 | 0.4123 | |
GRU | 0.0156 | 0.0236 | 0.0384 | |
BiGRU | 0.0689 | 0.1562 | 0.1047 | |
Experiment 9 | LSTM | 0.0196 | 0.0265 | 0.0241 |
BiLSTM | 0.3568 | 0.3956 | 0.4256 | |
GRU | 0.0452 | 0.0546 | 0.0514 | |
BiGRU | 0.0918 | 0.1256 | 0.1298 |
Experiment | Model | Train RMSE | Validation RMSE | Test RMSE |
---|---|---|---|---|
Experiment 1 | Experiment1_CatBoostRegressor | 0.007525 | 0.027265 | 0.020191 |
Experiment1_ExtraTreesRegressor | 2.05E-15 | 0.032114 | 0.019708 | |
Experiment 2_LGBMRegressor | 0.015742 | 0.01869 | 0.121217 | |
Experiment 2 | Experiment 2_RandomForestRegressor | 0.008446 | 0.016777 | 0.118291 |
Experiment 3 | Experiment 3_ExtraTreesRegressor | 1.97E-15 | 0.027225 | 0.050309 |
Experiment 3_XGBRegressor | 0.001102 | 0.032008 | 0.052786 | |
Experiment 4 | Experiment 4_ExtraTreeRegressor | 0 | 0.038955 | 0.096077 |
Experiment 4_LGBMRegressor | 0.064483 | 0.076645 | 0.094264 | |
Experiment 5 | Experiment 5_DecisionTreeRegressor | 0 | 0.036995 | 0.027503 |
Experiment 5_RandomForestRegressor | 0.023868 | 0.033271 | 0.033192 | |
Experiment 6 | Experiment 6_HuberRegressor | 0.012126 | 0.018583 | 0.020066 |
Experiment 6_LinearRegression | 0.01206 | 0.018489 | 0.019934 | |
Experiment 7 | Experiment 7_HuberRegressor | 0.015001 | 0.026221 | 0.013487 |
Experiment 7_LinearRegression | 0.014968 | 0.026394 | 0.013531 | |
Experiment 7_LinearSVR | 0.016352 | 0.029895 | 0.01475 | |
Experiment 8 | Experiment 8_DecisionTreeRegressor | 0 | 0.075652 | 0.339136 |
Experiment 8_LinearSVR | 0.042245 | 0.108166 | 0.342323 | |
Experiment 9 | Experiment 9_CatBoostRegressor | 0.006819 | 0.043317 | 0.031779 |
Experiment 9_ExtraTreesRegressor | 1.59E-15 | 0.039875 | 0.031513 | |
Experiment 9_LGBMRegressor | 0.04493 | 0.124974 | 0.031858 |
- Time Series Prediction: How Is It Different From Other Machine Learning? [ML Engineer Explains]
- A Comprehensive Guide to Time Series Analysis
- A RoadMap to Time-Series Analysis
- A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations
- Remaining Useful Life Prediction and State of Health Diagnosis of Lithium-Ion Battery Based on Second-Order Central Difference Particle Filter
- Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach
- Novel Statistical Analysis Approach for Remaining Useful Life Prediction of Lithium-Ion Battery