Skip to content

pklfz/TF-recomm

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TF-recomm

Tensorflow-based Recommendation systems

Factorization models are very popular in recommendation systems because they can be used to discover latent features underlying the interactions between two different kinds of entities. There are many variations of factorization algorithms (SVD, SVD++, factorization machine, ...). When implementing them or developing new ones, you probably spend a lot of time on the following areas rather than modeling:

  • Derivative calculation
  • Variant SGD algorithm exploration
  • Multi-thread acceleration
  • Vectorization acceleration

Tensorflow is a general computation framework using data flow graphs although deep learning is the most important application of it. With Tensorflow, derivative calculation can be done by auto differentiation, which means that you only need to write the inference part. It provides variant fancy SGD learning algorithms, CPU/GPU acceleration, and distributed training in a computer cluster. Since Tensorflow has some embedding modules for word2vc-like application, it is supposed to be a good platform for factorization models as well, even in production. Please note that embedding in deep learning is equivalent to factorization in shallow learning!

Data set

MovieLens 1M data set is used. It looks as follows. The columns are user ID, item ID, rating, and timestamp

1::1193::5::978300760
1::661::3::978302109
1::914::3::978301968
1::3408::4::978300275
1::2355::5::978824291

The problem is to predict the rating given by user u and item i. The metric is typically RMSE between the true ratings and predictions.

SVD implementation

Graph

Given by user u and item i, the inference of the classic SVD is

y_pred[u, i] = global__bias + bias_user[u] + bias_item_[i] + <embedding_user[u], embedding_item[i]>

The objective is to minimize

\sum_{u, i} |y_pred[u, i] - y_true[u, i]|^2 + \lambda(|embedding_user[u]|^2 + |embedding_item[i]|^2)

The above can be directly written by Tensorflow DSL as the operations. FTRL-Proximal is used for the optimizer. The TF graph would be like

Run

./download_data.sh
python svd_train_val.py

The results would be as follows. The validation RMSE is around or below 0.850.

epoch train_error val_error elapsed_time
  0 2.637530 2.587753 0.129696(s)
  1 1.034569 0.908686 4.110165(s)
  2 0.859582 0.887105 4.137014(s)
  3 0.835467 0.878246 4.132146(s)
  ...
 97 0.742144 0.849553 4.114120(s)
 98 0.742159 0.849624 4.120170(s)
 99 0.742281 0.849537 4.133140(s)

Speed tuning

To enable GPU for math operations, just set DEVICE="/gpu:0". The computation time of one epoch reduced from 4.1 to 3.4s.

Changing the batch size from 1000 to 10000. One epoch only requires 1.1s.

If you have large data, it is better to use TF data pipeline.

Others:

SVD++ will be provided soon.

Reference

Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model

About

Tensorflow-based Recommendation systems

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.1%
  • Shell 2.9%