forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TF FE] Stabilize Conv2DBackpropInput tests on all platforms (openvin…
…otoolkit#26011) **Details:** Stabilize Conv2DBackpropInput tests on all platforms **Ticket:** 105818 --------- Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com>
- Loading branch information
Showing
2 changed files
with
68 additions
and
77 deletions.
There are no files selected for viewing
77 changes: 0 additions & 77 deletions
77
tests/layer_tests/tensorflow_tests/test_tf_Conv2DBackprop.py
This file was deleted.
Oops, something went wrong.
68 changes: 68 additions & 0 deletions
68
tests/layer_tests/tensorflow_tests/test_tf_Conv2DBackpropInput.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
# Copyright (C) 2023-2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import logging | ||
import numpy as np | ||
import pytest | ||
import tensorflow as tf | ||
from common.tf_layer_test_class import CommonTFLayerTest | ||
|
||
rng = np.random.default_rng(475912) | ||
|
||
|
||
class TestConv2DBackpropInput(CommonTFLayerTest): | ||
def _prepare_input(self, inputs_info): | ||
assert 'filter:0' in inputs_info, "Test error: inputs_info must contain `filter`" | ||
assert 'out_backprop:0' in inputs_info, "Test error: inputs_info must contain `out_backprop`" | ||
|
||
filter_shape = inputs_info['filter:0'] | ||
out_backprop_shape = inputs_info['out_backprop:0'] | ||
inputs_data = {} | ||
if np.issubdtype(self.input_type, np.floating): | ||
inputs_data['filter:0'] = rng.uniform(-1.0, 1.0, filter_shape).astype(self.input_type) | ||
inputs_data['out_backprop:0'] = rng.uniform(-1.0, 1.0, out_backprop_shape).astype(self.input_type) | ||
return inputs_data | ||
|
||
def create_conv2d_backprop_input_net(self, input_sizes, filter_shape, out_backprop_shape, strides, | ||
padding, input_type): | ||
self.input_type = input_type | ||
tf.compat.v1.reset_default_graph() | ||
with tf.compat.v1.Session() as sess: | ||
input_sizes = tf.constant(input_sizes, dtype=tf.int32) | ||
filter = tf.compat.v1.placeholder(input_type, filter_shape, "filter") | ||
out_backprop = tf.compat.v1.placeholder(input_type, out_backprop_shape, "out_backprop") | ||
|
||
tf.raw_ops.Conv2DBackpropInput(input_sizes=input_sizes, filter=filter, out_backprop=out_backprop, | ||
strides=strides, padding=padding) | ||
|
||
tf.compat.v1.global_variables_initializer() | ||
tf_net = sess.graph_def | ||
|
||
ref_net = None | ||
|
||
return tf_net, ref_net | ||
|
||
test_data = [ | ||
dict(input_sizes=[1, 10, 10, 1], filter_shape=[1, 1, 1, 1], out_backprop_shape=[1, 10, 10, 1], | ||
strides=[1, 1, 1, 1]), | ||
dict(input_sizes=[1, 10, 10, 3], filter_shape=[2, 2, 3, 3], out_backprop_shape=[1, 5, 5, 3], | ||
strides=[1, 2, 2, 1]), | ||
dict(input_sizes=[1, 20, 20, 3], filter_shape=[2, 2, 3, 3], out_backprop_shape=[1, 10, 10, 3], | ||
strides=[1, 2, 2, 1]), | ||
dict(input_sizes=[1, 20, 20, 1], filter_shape=[1, 1, 1, 1], out_backprop_shape=[1, 20, 20, 1], | ||
strides=[1, 1, 1, 1]), | ||
] | ||
|
||
@pytest.mark.parametrize("params", test_data) | ||
@pytest.mark.parametrize("padding", ['SAME', 'VALID']) | ||
@pytest.mark.parametrize("input_type", [np.float16, np.float32, np.float64]) | ||
@pytest.mark.precommit | ||
@pytest.mark.nightly | ||
def test_create_conv2d_backprop_input(self, params, padding, input_type, | ||
ie_device, precision, ir_version, temp_dir, use_legacy_frontend): | ||
custom_eps = None | ||
if input_type == np.float16: | ||
custom_eps = 2 * 1e-3 | ||
self._test(*self.create_conv2d_backprop_input_net(**params, padding=padding, input_type=input_type), | ||
ie_device, precision, ir_version, temp_dir=temp_dir, | ||
use_legacy_frontend=use_legacy_frontend, custom_eps=custom_eps) |