Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BREAKING] More general instancing #6867

Merged
merged 7 commits into from
Aug 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added examples/assets/models/low-poly-tree.glb
Binary file not shown.
4 changes: 4 additions & 0 deletions examples/assets/models/low-poly-tree.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
The low-poly-tree model has been obtained from this address:
https://sketchfab.com/3d-models/low-poly-tree-with-twisting-branches-4e2589134f2442bcbdab51c1f306cd58
It's distributed under CC license:
https://creativecommons.org/licenses/by/4.0/
149 changes: 149 additions & 0 deletions examples/assets/scripts/misc/gooch-material.mjs
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
import {
Vec3,
ShaderMaterial,
SEMANTIC_POSITION,
SEMANTIC_NORMAL,
SEMANTIC_ATTR12,
SEMANTIC_ATTR13,
SEMANTIC_TEXCOORD0
} from 'playcanvas';

const createGoochMaterial = (texture, color) => {

// create a new material with a custom shader
const material = new ShaderMaterial({
uniqueName: 'GoochShader',
vertexCode: /* glsl */ `

// include code transform shader functionality provided by the engine. It automatically
// declares vertex_position attribute, and handles skinning and morphing if necessary.
// It also adds uniforms: matrix_viewProjection, matrix_model, matrix_normal.
// Functions added: getModelMatrix, getLocalPosition
#include "transformCore"

// include code for normal shader functionality provided by the engine. It automatically
// declares vertex_normal attribute, and handles skinning and morphing if necessary.
// Functions added: getNormalMatrix, getLocalNormal
#include "normalCore"

// add additional attributes we need
attribute vec2 aUv0;

// engine supplied uniforms
uniform vec3 view_position;

// out custom uniforms
uniform vec3 uLightDir;
uniform float uMetalness;

// variables we pass to the fragment shader
varying vec2 uv0;
varying float brightness;

// use instancing if required
#if INSTANCING

// add instancing attributes we need for our case - here we have position and scale
attribute vec3 aInstPosition;
attribute float aInstScale;

// instancing needs to provide a model matrix, the rest is handled by the engine when using transformCore
mat4 getModelMatrix() {
return mat4(
vec4(aInstScale, 0.0, 0.0, 0.0),
vec4(0.0, aInstScale, 0.0, 0.0),
vec4(0.0, 0.0, aInstScale, 0.0),
vec4(aInstPosition, 1.0)
);
}

#endif

void main(void)
{
// use functionality from transformCore to get a world position, which includes skinning, morphing or instancing as needed
mat4 modelMatrix = getModelMatrix();
vec3 localPos = getLocalPosition(vertex_position.xyz);
vec4 worldPos = modelMatrix * vec4(localPos, 1.0);

// use functionality from normalCore to get the world normal, which includes skinning, morphing or instancing as needed
mat3 normalMatrix = getNormalMatrix(modelMatrix);
vec3 localNormal = getLocalNormal(vertex_normal);
vec3 worldNormal = normalize(normalMatrix * localNormal);

// wrap-around diffuse lighting
brightness = (dot(worldNormal, uLightDir) + 1.0) * 0.5;

// Pass the texture coordinates
uv0 = aUv0;

// Transform the geometry
gl_Position = matrix_viewProjection * worldPos;
}
`,
fragmentCode: /* glsl */ `
varying float brightness;
varying vec2 uv0;

uniform vec3 uColor;
#if DIFFUSE_MAP
uniform sampler2D uDiffuseMap;
#endif

// Good shading constants - could be exposed as uniforms instead
float diffuseCool = 0.4;
float diffuseWarm = 0.4;
vec3 cool = vec3(0, 0, 0.6);
vec3 warm = vec3(0.6, 0, 0);

void main(void)
{
float alpha = 1.0f;
vec3 colorLinear = uColor;

// shader variant using a diffuse texture
#if DIFFUSE_MAP
vec4 diffuseLinear = texture2D(uDiffuseMap, uv0);
colorLinear *= diffuseLinear.rgb;
alpha = diffuseLinear.a;
#endif

// simple Gooch shading that highlights structural and contextual data
vec3 kCool = min(cool + diffuseCool * colorLinear, 1.0);
vec3 kWarm = min(warm + diffuseWarm * colorLinear, 1.0);
colorLinear = mix(kCool, kWarm, brightness);

// handle standard color processing - the called functions are automatically attached to the
// shader based on the current fog / tone-mapping / gamma settings
vec3 fogged = addFog(colorLinear);
vec3 toneMapped = toneMap(fogged);
gl_FragColor.rgb = gammaCorrectOutput(toneMapped);
gl_FragColor.a = alpha;
}
`,
attributes: {
vertex_position: SEMANTIC_POSITION,
vertex_normal: SEMANTIC_NORMAL,
aUv0: SEMANTIC_TEXCOORD0,

// instancing attributes
aInstPosition: SEMANTIC_ATTR12,
aInstScale: SEMANTIC_ATTR13
}
});

// default parameters
material.setParameter('uColor', color ?? [1, 1, 1]);

if (texture) {
material.setParameter('uDiffuseMap', texture);
material.setDefine('DIFFUSE_MAP', true);
}

const lightDir = new Vec3(0.5, -0.5, 0.5).normalize();
material.setParameter('uLightDir', [-lightDir.x, -lightDir.y, -lightDir.z]);

return material;
};

export { createGoochMaterial };
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
// @config DESCRIPTION This example shows how to use the instancing feature of a StandardMaterial to render multiple copies of a mesh.
import * as pc from 'playcanvas';
import { deviceType, rootPath } from 'examples/utils';

Expand Down
172 changes: 172 additions & 0 deletions examples/src/examples/graphics/instancing-custom.example.mjs
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
// @config DESCRIPTION This example demonstrates how to customize the shader handling the instancing of a StandardMaterial.
import * as pc from 'playcanvas';
import { deviceType, rootPath } from 'examples/utils';

const canvas = /** @type {HTMLCanvasElement} */ (document.getElementById('application-canvas'));
window.focus();

const assets = {
helipad: new pc.Asset(
'helipad-env-atlas',
'texture',
{ url: rootPath + '/static/assets/cubemaps/table-mountain-env-atlas.png' },
{ type: pc.TEXTURETYPE_RGBP, mipmaps: false }
)
};

const gfxOptions = {
deviceTypes: [deviceType],
glslangUrl: rootPath + '/static/lib/glslang/glslang.js',
twgslUrl: rootPath + '/static/lib/twgsl/twgsl.js'
};

const device = await pc.createGraphicsDevice(canvas, gfxOptions);
device.maxPixelRatio = Math.min(window.devicePixelRatio, 2);

const createOptions = new pc.AppOptions();
createOptions.graphicsDevice = device;

createOptions.componentSystems = [pc.RenderComponentSystem, pc.CameraComponentSystem];
createOptions.resourceHandlers = [pc.TextureHandler];

const app = new pc.AppBase(canvas);
app.init(createOptions);

// Set the canvas to fill the window and automatically change resolution to be the same as the canvas size
app.setCanvasFillMode(pc.FILLMODE_FILL_WINDOW);
app.setCanvasResolution(pc.RESOLUTION_AUTO);

// Ensure canvas is resized when window changes size
const resize = () => app.resizeCanvas();
window.addEventListener('resize', resize);
app.on('destroy', () => {
window.removeEventListener('resize', resize);
});

const assetListLoader = new pc.AssetListLoader(Object.values(assets), app.assets);
assetListLoader.load(() => {
app.start();

// setup skydome
app.scene.skyboxMip = 2;
app.scene.exposure = 0.8;
app.scene.envAtlas = assets.helipad.resource;

// set up some general scene rendering properties
app.scene.rendering.toneMapping = pc.TONEMAP_ACES;
app.scene.ambientLight = new pc.Color(0.1, 0.1, 0.1);

// Create an Entity with a camera component
const camera = new pc.Entity();
camera.addComponent('camera', {});
app.root.addChild(camera);

// create static vertex buffer containing the instancing data
const vbFormat = new pc.VertexFormat(app.graphicsDevice, [
{ semantic: pc.SEMANTIC_ATTR12, components: 3, type: pc.TYPE_FLOAT32 }, // position
{ semantic: pc.SEMANTIC_ATTR13, components: 1, type: pc.TYPE_FLOAT32 } // scale
]);

// store data for individual instances into array, 4 floats each
const instanceCount = 3000;
const data = new Float32Array(instanceCount * 4);

const range = 10;
for (let i = 0; i < instanceCount; i++) {
const offset = i * 4;
data[offset + 0] = Math.random() * range - range * 0.5; // x
data[offset + 1] = Math.random() * range - range * 0.5; // y
data[offset + 2] = Math.random() * range - range * 0.5; // z
data[offset + 3] = 0.1 + Math.random() * 0.1; // scale
}

const vertexBuffer = new pc.VertexBuffer(app.graphicsDevice, vbFormat, instanceCount, {
data: data
});

// create standard material - this will be used for instanced, but also non-instanced rendering
const material = new pc.StandardMaterial();
material.gloss = 0.5;
material.metalness = 1;
material.diffuse = new pc.Color(0.7, 0.5, 0.7);
material.useMetalness = true;

// set up additional attributes needed for instancing
material.setAttribute('aInstPosition', pc.SEMANTIC_ATTR12);
material.setAttribute('aInstScale', pc.SEMANTIC_ATTR13);

// and a custom instancing shader chunk, which will be used in case the mesh instance has instancing enabled
material.chunks.transformInstancingVS = `

// instancing attributes
attribute vec3 aInstPosition;
attribute float aInstScale;

// uniforms
uniform float uTime;
uniform vec3 uCenter;

// all instancing chunk needs to do is to implement getModelMatrix function, which returns a world matrix for the instance
mat4 getModelMatrix() {

// we have world position in aInstPosition, but modify it based on distance from uCenter for some displacement effect
vec3 direction = aInstPosition - uCenter;
float distanceFromCenter = length(direction);
float displacementIntensity = exp(-distanceFromCenter * 0.2) ; //* (1.9 + abs(sin(uTime * 1.5)));
vec3 worldPos = aInstPosition - direction * displacementIntensity;

// create matrix based on the modified poition, and scale
return mat4(
vec4(aInstScale, 0.0, 0.0, 0.0),
vec4(0.0, aInstScale, 0.0, 0.0),
vec4(0.0, 0.0, aInstScale, 0.0),
vec4(worldPos, 1.0)
);
}
`;

material.update();

// Create an Entity with a sphere and the instancing material
const instancingEntity = new pc.Entity('InstancingEntity');
instancingEntity.addComponent('render', {
material: material,
type: 'sphere'
});
app.root.addChild(instancingEntity);

// initialize instancing using the vertex buffer on meshInstance of the created mesh instance
const meshInst = instancingEntity.render.meshInstances[0];
meshInst.setInstancing(vertexBuffer);

// add a non-instanced sphere, using the same material. A non-instanced version of the shader
// is automatically created by the engine
const sphere = new pc.Entity('sphere');
sphere.addComponent('render', {
material: material,
type: 'sphere'
});
sphere.setLocalScale(2, 2, 2);
app.root.addChild(sphere);

// An update function executes once per frame
let time = 0;
const spherePos = new pc.Vec3();
app.on('update', function (dt) {
time += dt;

// move the large sphere up and down
spherePos.set(0, Math.sin(time) * 2, 0);
sphere.setLocalPosition(spherePos);

// update uniforms of the instancing material
material.setParameter('uTime', time);
material.setParameter('uCenter', [spherePos.x, spherePos.y, spherePos.z]);

// orbit camera around
camera.setLocalPosition(8 * Math.sin(time * 0.1), 0, 8 * Math.cos(time * 0.1));
camera.lookAt(pc.Vec3.ZERO);
});
});

export { app };
Loading