Vagrant project to spin up a cluster of 4 virtual machines with Hadoop v2.6.1 and Spark v1.4.1.
- node1 : HDFS NameNode + Spark Master
- node2 : YARN ResourceManager + JobHistoryServer + ProxyServer
- node3 : HDFS DataNode + YARN NodeManager + Spark Slave
- node4 : HDFS DataNode + YARN NodeManager + Spark Slave
- Download and install VirtualBox
- Download and install Vagrant.
- Run
vagrant box add centos65 https://github.com/2creatives/vagrant-centos/releases/download/v6.5.1/centos65-x86_64-20131205.box
- Git clone this project, and change directory (cd) into this project (directory).
- Run
vagrant up
to create the VM. - Run
vagrant ssh
to get into your VM. - Run
vagrant destroy
when you want to destroy and get rid of the VM.
Some gotcha's.
- Make sure you download Vagrant v1.4.3 or higher.
- Make sure when you clone this project, you preserve the Unix/OSX end-of-line (EOL) characters. The scripts will fail with Windows EOL characters.
- Make sure you have 4Gb of free memory for the VM. You may change the Vagrantfile to specify smaller memory requirements.
- This project has NOT been tested with the VMWare provider for Vagrant.
- You may change the script (common.sh) to point to a different location for Hadoop and Spark to be downloaded from. Here is a list of mirrors for Hadoop: http://www.apache.org/dyn/closer.cgi/hadoop/common/.
If you have the resources (CPU + Disk Space + Memory), you may modify Vagrantfile to have even more HDFS DataNodes, YARN NodeManagers, and Spark slaves. Just find the line that says "numNodes = 4" in Vagrantfile and increase that number. The scripts should dynamically provision the additional slaves for you.
You can make the VM setup even faster if you pre-download the Hadoop, Spark, and Oracle JDK into the /resources directory.
- /resources/hadoop-2.6.1.tar.gz
- /resources/spark-1.4.1-bin-hadoop2.tgz
- /resources/jdk-7u51-linux-x64.gz
The setup script will automatically detect if these files (with precisely the same names) exist and use them instead. If you are using slightly different versions, you will have to modify the script accordingly.
After you have provisioned the cluster, you need to run some commands to initialize your Hadoop cluster. Note, you need to be root to complete these post-provisioning steps. (Type in "su" and the password is "vagrant").
SSH into node1 and issue the following command.
- $HADOOP_PREFIX/bin/hdfs namenode -format myhadoop
SSH into node1 and issue the following commands to start HDFS.
- $HADOOP_PREFIX/sbin/hadoop-daemon.sh --config $HADOOP_CONF_DIR --script hdfs start namenode
- $HADOOP_PREFIX/sbin/hadoop-daemons.sh --config $HADOOP_CONF_DIR --script hdfs start datanode
SSH into node2 and issue the following commands to start YARN.
- $HADOOP_YARN_HOME/sbin/yarn-daemon.sh --config $HADOOP_CONF_DIR start resourcemanager
- $HADOOP_YARN_HOME/sbin/yarn-daemons.sh --config $HADOOP_CONF_DIR start nodemanager
- $HADOOP_YARN_HOME/sbin/yarn-daemon.sh start proxyserver --config $HADOOP_CONF_DIR
- $HADOOP_PREFIX/sbin/mr-jobhistory-daemon.sh start historyserver --config $HADOOP_CONF_DIR
Run the following command to make sure you can run a MapReduce job.
yarn jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.1.jar pi 2 100
SSH into node1 and issue the following command.
- $SPARK_HOME/sbin/start-all.sh
You can test if Spark can run on YARN by issuing the following command. Try NOT to run this command on the slave nodes.
$SPARK_HOME/bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--num-executors 10 \
--executor-cores 2 \
$SPARK_HOME/lib/spark-examples*.jar \
100
$SPARK_HOME/bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master spark://node1:7077 \
--num-executors 10 \
--executor-cores 2 \
$SPARK_HOME/lib/spark-examples*.jar \
100
Start the Spark shell using the following command. Try NOT to run this command on the slave nodes.
$SPARK_HOME/bin/spark-shell --master spark://node1:7077
Then go here https://spark.apache.org/docs/latest/quick-start.html to start the tutorial. Most likely, you will have to load data into HDFS to make the tutorial work (Spark cannot read data on the local file system).
You can check the following URLs to monitor the Hadoop daemons.
- [NameNode] (http://10.211.55.101:50070/dfshealth.html)
- [ResourceManager] (http://10.211.55.102:8088/cluster)
- [JobHistory] (http://10.211.55.102:19888/jobhistory)
- [Spark] (http://10.211.55.101:8080)
A list of available Vagrant boxes is shown at http://www.vagrantbox.es.
The Vagrant box is downloaded to the ~/.vagrant.d/boxes directory. On Windows, this is C:/Users/{your-username}/.vagrant.d/boxes.
This project was kludge together with great pointers from all around the internet. All references made inside the files themselves.
Copyright 2014 Jee Vang
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.