Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

proposed addition of a df.agg stacked go.bar example #4546

Merged
merged 7 commits into from
Apr 18, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 50 additions & 0 deletions doc/python/bar-charts.md
Original file line number Diff line number Diff line change
Expand Up @@ -304,6 +304,56 @@ fig.update_layout(barmode='stack')
fig.show()
```

### Stacked Bar Chart From Aggregating a DataFrame

Stacked bar charts are a powerful way to present results summarizing categories generated using the Pandas aggregate commands. `pandas.DataFrame.agg` produces a wide data set format incompatible with `px.bar`. Transposing and updating the indexes to achieve `px.bar` compatibility is a somewhat involved option. Here is one straightforward alternative, which presents the aggregated data as a stacked bar using plotly.graph_objects.
```

from plotly import graph_objects as go
import pandas as pd

# Get one year of gapminder data
url = 'https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv'
df = pd.read_csv(url)
df = df[df['year']==2007]
df["gdp"]=df["pop"]*df['gdpPercap']


# Build the summary of interest
df_summarized = df.groupby("continent", observed=True).agg("sum").reset_index()

df_summarized["percent of world population"]=100*df_summarized["pop"]/df_summarized["pop"].sum()
df_summarized["percent of world GDP"]=100*df_summarized["gdp"]/df_summarized["gdp"].sum()


df = df_summarized[["continent",
"percent of world population",
"percent of world GDP",
]]

# We now have a wide data frame, but it's in the opposite orientation from the one that px is designed to deal with.
# Transposing it and rebuilding the indexes is an option, but iterating through the DF using graph objects is more succinct.

fig=go.Figure()
for category in df_summarized["continent"].values:
fig.add_trace(go.Bar(
x=df.columns[1:],
# We need to get a pandas series that contains just the values to graph;
# We do so by selecting the right row, selecting the right columns
# and then transposing and using iloc to convert to a series
# Here, we assume that the bar element category variable is in column 0
y=list(df.loc[df["continent"]==category][list(df.columns[1:])].transpose().iloc[:,0]),
name=str(category)


)
)
fig.update_layout(barmode="stack")

fig.show()
```


### Bar Chart with Hover Text

```python
Expand Down