Skip to content

BigInt is an AssemblyScript class for math with arbitrarily large integers

License

Notifications You must be signed in to change notification settings

polywrap/as-bigint

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BigInt

BigInt is an AssemblyScript class for math with arbitrarily large integers.

Features

  • Fast arithmetic operations
  • Lightweight
  • Immutable instances
  • Core operations thoroughly tested

Getting Started

Installation

npm install as-bigint
or
yarn add as-bigint

Quick start

import { BigInt } from "as-bigint"

// generic constructor supports string and all native integer types
const generic: BigInt = BigInt.from(42);
// read BigInt from string
const a: BigInt = BigInt.fromString("19374529734987892634530927528739060327972904713094389147895891798347509179347517");
// fromString and toString methods optionally take a radix argument
const b: BigInt = BigInt.fromString("9F59E5Ed123C10D57E92629612511b14628D2799", 16);
// for hex strings, a radix argument is not required if value is prefixed by 0x (or -0x for negative numbers)
const fromHex: BigInt = BigInt.fromString("0x9F59E5Ed123C10D57E92629612511b14628D2799");

// arithmetic (operator overloads: +, -, *, /, %, **)
const sum: BigInt = a.add(b);
const difference: BigInt = a.sub(b);
const product: BigInt = a.mul(b);
const quotient: BigInt = a.div(b);
const remainder: BigInt = a.mod(b);
const exponential: BigInt = a.pow(3);
const squared: BigInt = a.square();
const squareRoot: BigInt = a.sqrt();
const roundedQuotient: BigInt = a.roundedDiv(b);

// faster operations when right-side variable is a 32 bit unsigned integer:
const c: u32 = 1234;
const intSum: BigInt = a.addInt(c);
const intDifference: BigInt = a.subInt(c);
const intProduct: BigInt = a.mulInt(c);
const intQuotient: BigInt = a.divInt(c);
const intRemainder: BigInt = a.modInt(c);
const intRoundedQuotient: BigInt = a.roundedDivInt(c);

// fast multiply and divide by 2 or power of 2
const mulByTwo: BigInt = a.mul2();
const mulByEight: BigInt = a.mulPowTwo(3);
const divBuTwo: BigInt = a.div2();
const divBySixteen: BigInt = a.divPowTwo(4);

// signed arithmetic bit shifts (operator overloads: <<, >>)
const shiftLeft3bits: BigInt = a.leftShift(3);
const shiftRight4bits: BigInt = a.rightShift(4);

// bitwise operations (operator overloads: ~, &, |, ^)
const not: BigInt = BigInt.bitwiseNot(bigIntA);
const and: BigInt = BigInt.bitwiseAnd(bigIntA, bigIntB);
const or: BigInt = BigInt.bitwiseOr(bigIntA, bigIntB);
const xor: BigInt = BigInt.bitwiseXor(bigIntA, bigIntB);

// comparison operations (operator overloads: ==, !=, <, <=, >, >=)
const isEqual: boolean = a.eq(b);
const isNotEqual: boolean = a.ne(b);
const isLessThan: boolean = a.lt(b);
const isLessThanOrEqualTo: boolean = a.lte(b);
const isGreaterThan: boolean = a.gt(b);
const isGreaterThanOrEqualTo: boolean = a.gte(b);

// binary arithmetic, comparison, and bitwise operators also have static implementations
const staticProduct: BigInt = BigInt.mul(a, b);
const staticIsEqual: boolean = BigInt.eq(a, b);
const staticAnd: boolean = BigInt.bitwiseAnd(a, b);

// instantiate new copy, absolute value, or opposite
const sameNumber: BigInt = a.copy();
const positiveNumber: BigInt = a.abs();
const oppositeSign: BigInt = a.opposite();

// convenience functions
const sizeOfNumber: i32 = a.countBits();
const isZeroNumber: boolean = a.isZero();
const zero: BigInt = BigInt.ZERO;
const one: BigInt = BigInt.ONE;
const negOne: BigInt = BigInt.NEG_ONE;

// even faster constructors for small numbers (max values shown here)
const verySmall: BigInt = BigInt.fromUInt16(65535);
const verySmallSigned: BigInt = BigInt.fromInt16(-65535);
const prettySmall: BigInt = BigInt.fromUInt32(4294967295);
const prettySmallSigned: BigInt = BigInt.fromInt32(-4294967295);
const stillSmall: BigInt = BigInt.fromUInt64(18446744073709551615);
const stillSmallSigned: BigInt = BigInt.fromInt64(-18446744073709551615);

// output to integers
const myInt32: i32 = BigInt.toInt32();
const myInt64: i64 = BigInt.toInt64();
const myUInt32: u32 = BigInt.toUInt32();
const myUInt64: u64 = BigInt.toUInt64();

Development Status & Roadmap

CI

Current Status

Operation Tests Optimization
Addition Implemented Complete
Subtraction Implemented Complete
Multiplication Implemented Up to ~1,500 bit numbers
Exponentiation Implemented Complete
Division Implemented Incomplete
Remainder Implemented Incomplete
Square root Implemented Complete
Modular reduction N/A Not implemented
Random number generation N/A Not implemented
Cryptographic functions N/A Not implemented

Note that operator overloads <<, >>, and ** only support right-hand operands that fit in an i32--i.e. between the range (0, 2147483647].

TODO List

Priority based on blockchain-related use case; 1 is highest priority, 5 is lowest

Task Description Priority
Division optimization A faster division algorithm is needed 1
Modular reduction methods Currently using division remainder for modulus; Implement Barret reduction, Montgomery reduction, Diminished Radix algorithms 3
Random number generation Implement function to generate random integers of arbitrary size 4
Cryptographic algorithms Implement functions used for cryptography (e.g., Greatest common divisor, primality tests, sha3) 5
More multiplication optimization Implement Karatsuba and Tom-Cook three-way multiplication for faster multiplication of numbers larger than 1,500 bits 5

Contributing

Build

yarn build

Test

yarn test

Lint

yarn lint

To autofix lint errors: yarn lint:fix

Handling decimal numbers

If you need to work with arbitrarily large decimal numbers, check out as-bignumber: https://github.com/polywrap/as-bignumber. The BigNumber class is built on top of BigInt for high-performance decimal arithmetic.

Handling fractions

If you need to work with numbers represented as fractions, check out as-fraction: https://github.com/polywrap/as-fraction. The Fraction class is built on top of BigInt for high-performance fraction arithmetic.

Acknowledgements

Polywrap developed BigInt to use in the development tools we produce for fast, language-agnostic decentralized API development. Polywrap allows developers to interact with any web3 protocol from any language, making between-protocol composition easy. Learn more at https://polywrap.io.

The BigInt method implementations are largely based on BigNum Math: Implementing Cryptographic Multiple Precision Arithmetic 1st Edition by Tom St Denis.

All bitwise operation methods are based on Google's JSBI.

Contact

Please create an issue in this repository or email kris@dorg.tech

About

BigInt is an AssemblyScript class for math with arbitrarily large integers

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published