Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Memory usage profiling support, code reduction refactor #158

Closed
wants to merge 3 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file added benchmark/__init__.py
Empty file.
89 changes: 89 additions & 0 deletions benchmark/base.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
import argparse
import logging
import sys
import torch
import time
from collections import defaultdict
from benchmark.utils import profile_latency, profile_usage


class LlamaBenchmarkBase:
def __init__(self, model_dir_path: str, device: str, *args, **kwargs) -> None:
self.model_dir_path, self.device = model_dir_path, device
self.results = []

def load_model(self):
return self

@profile_usage
@profile_latency
def run_model(self, prompt: str, max_tokens: int, *args, **kwargs):
raise NotImplementedError

def benchmark(self, prompt: str, max_tokens: int, repetitions: int, *args, **kwargs) -> None:
for i in range(repetitions):
logging.info(
f"Running repetition [{str(i+1).zfill(len(str(repetitions)))}/{repetitions}]"
)
(latency, memory_usage), results = self.run_model(
prompt=prompt, max_tokens=max_tokens, *args, **kwargs
)

print(latency, memory_usage)

self.results.append((latency, memory_usage))

del self.model
if self.device == "cuda":
torch.cuda.synchronize()

def benchmark_arg_parser(name: str, benchmark_class):
parser = argparse.ArgumentParser(description=f"{name} Benchmark.")
parser.add_argument(
"--prompt",
type=str,
help="The prompt for the model.",
)
parser.add_argument("--max_tokens", type=int, help="The maximum number of tokens.")
parser.add_argument(
"--repetitions",
type=int,
help="The number of repetitions for the benchmark.",
)
parser.add_argument(
"--device",
help="Device to use for the benchmark.",
)
parser.add_argument(
"--log_file",
type=str,
help="Path to the log file for writing logs (in append mode).",
)
parser.add_argument(
"--models_dir",
type=str,
help="Path to the models directory.",
)

args = parser.parse_args()

logging.info(
f"Running benchmark with: max_tokens={args.max_tokens} prompt={args.prompt} "
+ f"repetitions={args.repetitions} device={args.device}"
)
report = defaultdict(lambda: defaultdict(float))

for precision in ("fp32", "fp16", "int4"):
logging.info(f"Running VLLM benchmark on Llama on {precision} precision.")

llama_vllm_bench = benchmark_class(
f"{args.models_dir}/llama-2-7b-hf"
if precision != "int4"
else f"{args.models_dir}/llama-2-7b-autoawq",
device=args.device,
precision=precision,
).load_model()

llama_vllm_bench.benchmark(
max_tokens=args.max_tokens, prompt=args.prompt, repetitions=args.repetitions
)
File renamed without changes.
1 change: 1 addition & 0 deletions benchmark/bench_vllm/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@

46 changes: 46 additions & 0 deletions benchmark/bench_vllm/bench.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
import sys
from vllm import LLM
from vllm.model_executor.parallel_utils import parallel_state

import logging
from benchmark.base import LlamaBenchmarkBase, benchmark_arg_parser

logging.getLogger("vllm").setLevel(logging.ERROR)
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)

class LlamavLLMBenchmark(LlamaBenchmarkBase):
def __init__(self, model_dir_path: str, device: str, precision: str) -> None:
assert device == "cuda", ValueError("Supported device is cuda only.")
assert precision in ["fp16", "fp32", "int4"], ValueError(
"supported precision are: fp16, fp32 and int4"
)

self.precision = precision
self.precision_map = {"fp16": "float16", "fp32": "float32"}
super().__init__(model_dir_path=model_dir_path, device=device)

def load_model(self):
if self.precision != "int4":
self.model = LLM(model=self.model_path)
self.model.dtype = self.precision_map[self.precision]
else:
self.model = LLM(model=self.model_path, quantization="AWQ")
return self

def run_model(self, prompt: str, max_tokens: int) -> float:
self.model.max_num_seqs = max_tokens
output = self.model.generate(prompts=[prompt])
return output

def benchmark(self, prompt: str, max_tokens: int, repetitions: int, *args, **kwargs) -> None:
super().benchmark(prompt, max_tokens, repetitions, *args, **kwargs)

if self.device == "cuda":
parallel_state.destroy_model_parallel()


benchmark_arg_parser(name="vLLM", benchmark_class=LlamavLLMBenchmark)
2 changes: 1 addition & 1 deletion bench_vllm/bench.sh → benchmark/bench_vllm/bench.sh
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,6 @@ REPETITIONS="${REPETITIONS:-10}"
MAX_TOKENS="${MAX_TOKENS:-512}"
DEVICE="${DEVICE:-'cuda'}"
LOG_FILENAME="${LOG_FILENAME:-"$LOGS_FOLDER/benchmark_vllm_$(date +'%Y%m%d%H%M%S').log"}"
MODELS_DIR="${MODELS_DIR:-"./models"}"
MODELS_DIR="${MODELS_DIR:-"../models"}"

run_benchmarks "$PROMPT" "$REPETITIONS" "$MAX_TOKENS" "$DEVICE" "$LOG_FILENAME" "$MODELS_DIR"
File renamed without changes.
2 changes: 1 addition & 1 deletion bench_vllm/setup.sh → benchmark/bench_vllm/setup.sh
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

set -euo pipefail

AWQ_WEIGHTS_FOLDER="${AWQ_WEIGHTS_FOLDER:-"./models/llama-2-7b-awq"}"
AWQ_WEIGHTS_FOLDER="${AWQ_WEIGHTS_FOLDER:-"../models/llama-2-7b-awq"}"

check_python() {
if command -v python &> /dev/null; then
Expand Down
40 changes: 40 additions & 0 deletions benchmark/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
import os
import subprocess
import time
import psutil
import functools
from contextlib import contextmanager
from multiprocessing import Pipe, Process
from multiprocessing.connection import Connection
from memory_profiler import profile as mem_profile
from line_profiler import LineProfiler

def profile_usage(func):
@functools.wraps(func)
def wrapper_profile_usage(*args, **kwargs):
mem_before = psutil.virtual_memory().used
result = func(*args, **kwargs)
mem_after = psutil.virtual_memory().used
mem_usage = mem_after - mem_before
print(f"Memory usage: {mem_usage} bytes")
return result, mem_usage

return wrapper_profile_usage


def profile_latency(func):
@functools.wraps(func)
def wrapper_profile_latency(*args, **kwargs):
profiler = LineProfiler()
profiler.add_function(func)
profiler.enable_by_count()
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
profiler.disable_by_count()
profiler.print_stats()
latency = end_time - start_time
print(f"Latency: {latency} seconds")
return result, latency

return wrapper_profile_latency
Loading