Skip to content

pulkit25/deep_learning_project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Super-resolution of DIV2K using GAN

The dataset can be downloaded from: http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip Other datasets can also be used. No changes need to be done to the code.

If you have a different machine setup, do not execute the run.sh file. Set up the server and datasets and then run the srgan.py file. Instruction on running the script on Ubuntu GPU machine AWS for deep learning(p3.2xlarge):

  1. Execute the run.sh file.
  2. It sets up the tensorflow_p36 anaconda environment
  3. It creates the folder project in current directory
  4. Clones the codes from https://github.com/pulkit25/deep_learning_project.git
  5. It gets the data and unzips it into the dataset folder in /dev/shm/dataset/DIV2K_train_HR
  6. Installs keras_contrib in the active environment (tensorflow_p36 in this case)
  7. Gives access permissions to the folders created by the script
  8. Run the script using command 'python srgan.py --datadir your/data/dir --outputdir your/output/dir --upscale upscaling_value(int) --inputdim lowres_img_dimension(considered to be a square image, int) --nresblocks number_of_residual_blocks(int) --lr learning_rate(float) --epochs number_epochs(int) --batch_size batch_size(int) --pretrain 0/1(whether to pretrain with SRResNet or take existing pretrained model, int) --load_img_cnt number_of_images_for_SRResNet_output(int)'. Remove any argument to use defaults.

Last Updated: 04/25/2019

About

Deep Learning project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published