Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issue #1697 Remove the function and all its reference poa_horizontal_ratio. #2021

Merged
merged 3 commits into from
May 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion docs/sphinx/source/reference/irradiance/components.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,6 @@ Decomposing and combining irradiance
irradiance.get_extra_radiation
irradiance.aoi
irradiance.aoi_projection
irradiance.poa_horizontal_ratio
irradiance.beam_component
irradiance.poa_components
irradiance.get_ground_diffuse
Expand Down
3 changes: 2 additions & 1 deletion docs/sphinx/source/whatsnew/v0.11.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ v0.11.0 (Anticipated June, 2024)

Breaking changes
~~~~~~~~~~~~~~~~

* Remove the function and all its reference `poa_horizontal_ratio`. (:issue:`1697`, :pull:`2021`)

Deprecations
~~~~~~~~~~~~
Expand Down Expand Up @@ -36,3 +36,4 @@ Requirements
Contributors
~~~~~~~~~~~~
* Cliff Hansen (:ghuser:`cwhanse`)
* Siddharth Kaul (:ghuser:`k10blogger`)
33 changes: 1 addition & 32 deletions docs/tutorials/irradiance.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -1524,37 +1524,6 @@
"plt.legend();"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The ratio between POA projection and the horizontal projection."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deZhcZZn38e9dW1fvS7qTdNLpJGQlGwSafRFkHxAUB8F1fF0iijPgLuO4y4zz4qs4OqNGUdxAUdkGRCEzIgaMEEIIS8gG2ZNOd9L7Vtv9/nFOJ51OJ+nt1DldfX+uq67uqjrd53fVOXXXU895znNEVTHGGJObQn4HMMYY4x0r8sYYk8OsyBtjTA6zIm+MMTnMirwxxuQwK/LGGJPDslLkRSQsIs+LyMPZWJ8xxhhHtlryNwPrs7QuY4wxLs+LvIjUAFcCP/J6XcYYYw6XjZb8HcCngUwW1mWMMaaPiJf/XESuAvap6nMicsExllsGLAMoLCw8df78+V7GMqOooyfFa40dzKwspCjv8N3pxV0tTCzOY1JJ3Kd0ZjR0J9Ns2tdObUUBpfnRw557ZXcrZQVRppTl+5TO9HruuecaVbWq/+Pi5dw1IvJvwLuBFBAHSoD7VPVdR/uburo6Xb16tWeZzOj622v7uX75Ku7+wBmcPbvysOdOu20FF82fyNffusSndGY0/GVTA+++8xnu/dBZnD6z4rDnlnzpj1x7Sg1funqhT+lMLxF5TlXr+j/uaXeNqt6qqjWqOgO4AfjfYxV4k1uqivLY19bjdwwzQo3tzjasLIr5nMQMh42TN56ZWJJHgxX5Ma+xLQFAZXGez0nMcGStyKvqE6p6VbbWZ/xXVWRFPhc0tvcQi4QozvP0EJ7xiLXkjWeqivNobO8hk7FrFoxlDW09VBbGEBG/o5hhsCJvPDOxOI9URmnqTPgdxYzA7pYuGz0zhlmRN56Z6A6d3Nva7XMSMxJ7WrqptiI/ZlmRN56Z6haGXU1dPicxw5XJKHuau5lSZuc6jFVW5I1nasrdIt9sRX6sauzoIZHOHPzANmOPFXnjmYrCGPFoiJ3Wkh+zdjc7XW1TSq3Ij1VW5I1nRISa8gJ2NnX6HcUM0273W5gdeB27rMgbT00ty7fumjHsUJG3Pvmxyoq88VRNeb5114xhW/d3UBKPHDExmRk7rMgbT9VWFNDcmaSlM+l3FDMMrzd2MLOqyE6EGsOsyBtPzaoqAmBzQ7vPScxwbG3s5ITKQr9jmBGwIm88NWuiU+S3WJEfc7qTaXY1dzHTivyYZkXeeGpaeT6xcIgt+6zIjzVb93cAMMOK/JhmRd54KhIOMbOykM1W5MecLfucIm/dNWObFXnjudkTi6y7ZgzasLeVkDjbz4xdVuSN52ZVFbL9QCfdybTfUcwQvLKnjROqiohHw35HMSPgaZEXkbiIPCMiL4jIyyLyZS/XZ4LpxOoSMgob9rb5HcUMwat7W5k/udjvGGaEvG7J9wBvVNWTgJOBy0XkTI/XaQJmcU0pAOt2NvucxAxWa3eSnU1dnFhd4ncUM0KeXs9LVRXo7YyNuje7TNA4M7UsnwmFMdbtbPE7ihmkl3Y522rBFCvyY53nffIiEhaRtcA+4HFV/dsAyywTkdUisrqhocHrSCbLRITFNaVW5MeQNduaADhlWrnPScxIeV7kVTWtqicDNcDpIrJogGWWq2qdqtZVVVV5Hcn4YMnUUjbta6MzkfI7ihmENdubmT2xiNICm7NmrMva6BpVbQaeAC7P1jpNcCytLSejsGab9csHnaqyZnsTp9ZaKz4XeD26pkpEytzf84GLgVe9XKcJptNmVhAOCX99rdHvKOY4tjR00NyZ5NTpVuRzgacHXoFq4KciEsb5QLlXVR/2eJ0mgIryIpxUU8rTW/b7HcUcx1ObnQ/iM06o8DmJGQ1ej65ZByz1ch1m7Dh7ViXf+/MW2ntSFOV53b4ww/XkxgZmTChg+gSbziAX2BmvJmvOmV1JOqOs3GQjqIKqJ5Xm6S37OX+uDYDIFVbkTdacNqOc8oIof3hpr99RzFE8+3oTXck058+xIp8rrMibrImEQ1yyYBL/s34fiVTG7zhmAI+8uJvCWJhz51T6HcWMEivyJqsuWziZtp4UT22xUTZBk0xnePSlvVy8YJJNSpZDrMibrDpndiUl8Qj3r9nldxTTz8pNjTR3JrlycbXfUcwosiJvsioeDXPtKTX84aW9NHUk/I5j+vjl37ZTWRTjDfOsPz6XWJE3WXfD6dNIpDPc97y15oNiV3MX//tqPdefNo28iHXV5BIr8ibr5k8u4dTp5fz06a2k0nYANgh+sWobCrz99Fq/o5hRZkXe+OLGN8xi+4FOHnpht99Rxr3mzgQ//+s2rlg0mZryAr/jmFFmRd744qL5E5k/uZjv/mmzteZ9dufK12nvSXHzRXP9jmI8YEXe+CIUEj52yVxea+jgF6u2+R1n3NrT0sWdK1/nysXVzLNL/eUkK/LGN5cumMR5cyr55uMb2d/e43eccelrj6wnnVE+e8V8v6MYj1iRN74REb74pgV0JtJ84aGXca4WabLl8VfqeWTdHj5ywWymVVhffK6yIm98NXtiMR+7ZC6PrNvD7+wEqaypb+3m0799gUVTS/jwBbP8jmM8ZEXe+O7GN8zijJkVfP6Bl3jRrgPruZ5Umpt+uYbuZIZv37CUWMTKQC7z+spQ00TkTyKyXkReFpGbvVyfGZvCIeE771hKRWGM9//0WXY1d/kdKWdlMspnfruO1duauP26JcyqKvI7kvGY1x/hKeATqnoicCZwk4gs8HidZgyaWBznx+89ja5Emnf+cJUVeg9kMsqt973IA2t386nL5nHVkil+RzJZ4GmRV9U9qrrG/b0NWA9M9XKdZuyaN7mYu953OvvbE7zt+39lS0O735FyRncyzcfvXcuvV+/gn944m49YP/y4kbXOOBGZgXMpwL9la51m7Dl1ejl3f/BMupNp3vzdp1jxSr3fkca8+tZubli+6mAL/uOXzkNE/I5lsiQrRV5EioDfAbeoausAzy8TkdUisrqhwS4NN94trinloX88l+mVBXzgZ6v50kMv05lI+R1rTHp43W4uv+NJNta38f13ncJNF872O5LJMs+LvIhEcQr8L1X1voGWUdXlqlqnqnVVVTbNqYGpZfn89sazee/ZM7jr6a1cdseTPPbyXhtLP0jb9ndw48+f46N3P09tRQEPffQcLl9k88SPRxEv/7k43wnvBNar6je9XJfJPfFomC9dvZArFk3m1vtfZNnPn+P0GRV84tK5nD6zwrocBrC3pZsfPLmFX6zaRiQU4lOXzeND559AJGzDJMcrT4s8cA7wbuBFEVnrPvbPqvp7j9drcsgZJ0zgj7ecz6+f3cEdKzZx/fJVLKkp5f3nzuSyhZPH/aXqVJUXd7Vw19NbeWjtbjKqXHfqND5+6VwmlcT9jmd85mmRV9WVgDW3zIhFwyHedeZ03npKDb9bs5Mfr3ydm3+1lpJ4hCuXVHPNyVOpm14+rlqsOw508vC6Pdy3Zieb9rVTEAvzrjOn8/5zZ9o0BeYgr1vyxoyqfLeQveP0Wp7a0sj9a3bx4Nrd3PPMDkriEc6fW8UF8yZy1qwJTCmN51SXTntPiue3N/HnDQ38acM+tjR0AFA3vZx/fctirlxSTWl+1OeUJmisyJsxKRQSzptTxXlzqvhqT4o/bdjHExsaeGJDAw+v2wPApJI8Tqkt55Tack6sLmHupCKqivPGROHv6EmxaV87G+vbWLezmee2NbNhbysZhVg4xBknVPDOM6Zz8YmTqJ1grXZzdFbkzZhXmBfhqiVTuGrJFDIZ5ZU9razeeoA125tZs72JR1/ae3DZ0vwocyYWMaOykCll+dSU5TOlLJ+p5flUFsUoyotk5UOgJ5XmQEeC3c3d7GruYrd723Ggk0372tnZdOiM36K8CEtry7jkjXM4pbaM02ZUUJhnb10zOLanmJwSCgmLppayaGop7z3HeayxvYeNe9vYWN/Gxn3tbK5vZ+WmRurbuuk/IjMaFsoLYlQUxigviFEcj5AfC5MfDROPhsmPhYlHwkTCzgdB7+eBuIee0pkMXck03ckM3ck0Xck0PckMrd1JmjoTNHUkae5M0JFIH5G9JB5hankBS2vLub5uGnMnFzN3UjG1FQWEQ8H/9mGCyYq8yXmVRXlUzs7j7NmVhz2eTGfY29LNzianFX2gI8GBzgRNHQnn944E2w90HizWXQmneCeOc7nCcEiIR0LE3Q+GvGiI4niUyqI85kwsprwgRnlBlPLCGFPdbxJTyuIUx60/3Yw+K/Jm3IqGQ0yrKBjySJRUOkNa9YhvAQAhEaJhGRP9/mZ8sCJvzBBFwiF745gxY/wMKjbGmHHIirwxxuQwK/LGGJPDrMgbY0wOsyJvjDE5zIq8McbkMCvyxhiTw6zIG2NMDrMib4wxOSwb13j9sYjsE5GXvF6XMcaYw2WjJX8XcHkW1mOMMaYfz4u8qj4JHPB6PcYYY44UiD55EVkmIqtFZHVDQ4PfcYwxJmcEYjI9VV0OLAeoq6sbYALX4/v2ik08sHZX7/9zfh62jsOXj4SESFiIhkNEwiGife5HwyEiISEaCRGPhCmI9d4iFMScC0f0fawkP0pZfpSygijF8ahd4MGYHJbJKC1dzkVgWrqSdCbSdPSk6Eik6OhJ05lI0d6TprMnRUciTU8yTSKdIZHKkExnSKa1333nsWQ6wzeuO4kzT5gwqnkDUeRHQ3VZnMVTSw/eP3TFHvo85txTVVIZJZVWUpkMibSSSmdIpZX2VIqk+3sinaEnmaEjkaIzkSaROvbFInrXW+oW/dKCGGX5zsUiJpfmMakkfvA2uSROZVGMSDgQX6aMGdcyGaWxo4f6lh7qW7vZ29rt/GzpZn9HgqbOBM2dhwr7QNcS6K+3EZgfcxqOMbcBGYuEiIaF4niEvEjosIamFxdiz5ki/7a6abytbpqn60ilnUu7dSZ6b07xb+1K0tyZpLkrSUtnguY+95s6E2ysb2NfWw/pzOF7Rkhgank+MyYUMn1CgfuzkBOqCpkxodC+ERgzilSV3S3dbN7Xzrb9Hbze2MG2/Z1s3d/BjgOdJNNHvj+rivOoLMqjvMC5ilfvVb3KCmKUF0YpzY9SlBelIBamMC9CofszPxomFJD3r+dFXkTuAS4AKkVkJ/BFVb3T6/V6IRIOURwODesybemMsr+jh32tPext6aa+rZs9zd1sP9DJtv0dPLR2N63dqYPLx6Mh5k8uYcGUEhZUl7B4aikLp5RYy9+YQVBVXm/sYM32Zl7Z3cr6Pa28sqeVlq7kwWUKYmGmTyhk3qRiLl0wmSllh75lTy6NU1mUlxMNLc+LvKq+3et1jAXhkDCxOM7E4jiL+nQr9dXcmWDr/k4272t3dsrdrTyybg93/2074OyUp04v5/QZFZw1awJLa8tzYic0ZqRUlS0NHTy5sYFntx7g2a1NNLb3AE6Dad7kEv5ucTULppQwd2IRMysLqSrOGxeXacyZ7ppcUFYQ4+SCGCdPKzv4mKqyq7mLF3a08Mzr+/nb6wf45oqN6ONQURjjwnkTufjEiVwwbyL5sbCP6Y3JrkxGeXbrAf74cj3/82o92/Z3AlBTns/5cyqpm1FB3YxyZlUVjevGkBX5gBMRasoLqCkv4Mol1QC0dCZZubmRFeudnft3a3ZSlBfhqiXVXFdXwym15eOihWLGpx0HOvnN6h3c9/wudjZ1EYuEOGfWBD5w3glcOK+KmvKhXZg911mRH4NKC6JcuaSaK5dUk0pneGbrAX733C4eXLubXz27g4VTSrjxDbO4YtFk68M3OeO5bQf44ZOv89grewE4d04Vn7psHpcsmERBzErZ0dgrM8ZFwiHOnlXJ2bMq+fI1C3lo7W5+9JfX+Md7nqe2ooBPXTaPq5ZUW8vejFkv7Wrh64++ysrNjZTmR7nxDbN4z1kzmFwa9zvamGBFPocU5UV4xxm13HDaNB57pZ47VmzkH+95nrue3spXrlnIwikDH/A1JohaOpPc9vtX+M1zOynNj/IvV57I20+vpTDPytZQ2KuVg0Ih4fJFk7lkwSR++9wObv/jRq757lPccvEcbnzDLOvCMYG34pV6br3/RQ50JFh23gl85MLZnpwoNB5Ykc9h4ZBw/Wm1XLZwMp9/8GW+8dhGntzUyPffdSoVhTG/4xlzhHRG+cZjG/jeE1s4sbqEn7z3tKMOOTaDY026caCsIMZ33r6Ub77tJF7Y0czV313Jpvo2v2MZc5iuRJoP/PRZvvfEFt5+ei0P3HS2FfhRYEV+HLn2lBru/dBZJFIZrl++ivV7Wv2OZAwAbd1J/uHHz/DExga++uZF/Nu1i8mL2Hkfo8GK/Dhz0rQy7v3QWeRFQrzjh6vYvM9a9MZfPak0H/zZatZsb+I/bljKu8+c7neknGJFfhyaUVnIr5adSTgU4n13rWa/e/q3Mdmmqnz6t+tY9doBvnHdSbzppCl+R8o5VuTHqekTCvnhe06lvrWbm+5ec8QMmcZkw50rX+fBtbv51GXzePPSqX7HyUlW5MexpbXlfPXNi1j12gF+8OQWv+OYcebFnS38+x9e5ZIFk/jIBbP8jpOzrMiPc9edWsOVi6v55mMb7UCsyZpkOsMnf/MCEwrzuP3vl9gZ2R6yIj/OiQi3vWURxfEIX3jwpYOXTjTGS3c9tZUN9W18+ZqFlBXYORte8rzIi8jlIrJBRDaLyGe9Xp8ZurKCGJ++fD7Pbm3ioRd2+x3H5LiGth7uWLGRC+dVcemCSX7HyXmeFnkRCQP/CVwBLADeLiILvFynGZ7r66Yxf3Ix316xiVT6+NeyNWa4lj+5ha5kms9ftcC6abLA65b86cBmVX1NVRPAr4BrPF6nGYZQSLjl4jm81tjBf6+z1rzxRkNbDz9ftY03L53KCVVFfscZF7wu8lOBHX3u73QfMwF06YLJzJ9czPefeM365o0nfv7XrfSkMnz0wtl+Rxk3vC7yA30XO6J6iMgyEVktIqsbGho8jmSOJhQS3nv2DDbUt7F6W9Og/sY+CsxgJdMZ7nl2BxfOm2it+CzyusjvBKb1uV8DHNEXoKrLVbVOVeuqqqo8jmSO5eqTp1Acj/CLVduG9ofWtWqO47GX62lo67FpC7LM6yL/LDBHRGaKSAy4AXjI43WaESiIRXjrKTU8+uJeWrqSfscxOeTXq3cwtSyf8+daQy6bPC3yqpoCPgr8EVgP3KuqL3u5TjNyb146lUQ6w2Mv7/U7iskRTR0JntrcyJtOmkI4ZF/7ssnzcfKq+ntVnauqs1T1Nq/XZ0bupJpSasrzeeTFPX5HMTnisVf2ks4oVy6u9jvKuGNnvJojiAhXLqlm5aZG67Ixo+KRF/cyrSKfRVNL/I4y7liRNwO6aP4kUhnlr1sa/Y5ixriOnhR/3dLIFYuq7eQnH1iRNwNaWltGUV6EP2+0Im9G5pmtB0imlfPmVPodZVyyIm8GFA2HOHvWBJ7c2GAnRpkReWpTI7FIiNNmVPgdZVyyIm+O6ry5Vexq7mLb/k6/o5gxbOXmRuqmlxOP2jVb/WBF3hxV3fRyANZsH9zZr8b019KZ5NW9bZx1wgS/o4xbVuTNUc2dVExRXsSKvBm2F3Y2A85VyIw/rMibowqHhJOnlfHctma/o5gxau2OZkRgybRSv6OMW1bkzTGdUlvGhr2ttPek/I5ixqAXdjQzq6qIknjU7yjjlhV5c0wn15aRUez6r2bIVJW1O5o5eVqZ31HGNSvy5pjmT3bOUHzVirwZovrWHvZ3JFg81bpq/GRF3hxTdWmckniE9Xvb/I5ixphN+5x9Zu6kYp+TjG9W5M0xiQgnVpdYS94M2cb6dgDmTLILhPjJirw5rhOrS9iwt83OfDVDsnlfGxWFMSqL8vyOMq5ZkTfHNauqkI5EmvrWHr+jmDFkY307sydaK95vVuTNcc2sdN6orzd2+JzEjBWqysb6NuZaV43vPCvyInKdiLwsIhkRqfNqPcZ7MyoLACvyZvAa2npo604x2y7Y7TsvW/IvAdcCT3q4DpMFU0rziUVCbN1vRd4MzvYDzqR20ycU+pzERLz6x6q6HrCLBOSAUEiYXlFgLXkzaDuanCI/raLA5yQmEH3yIrJMRFaLyOqGhga/45gBzKgsZKsVeTNIOw50AVBTnu9zEjOiIi8iK0TkpQFu1wzl/6jqclWtU9W6qqqqkUQyHqkpz2d3c5cNozSDsuNAJxOL82wO+QAYUXeNql48WkFMsE0pzacjkaa1O0Vpvk02ZY5tR1OnddUERCC6a0zwVZfFAdjT0uVzEjMW7GzqYpp11QSCl0Mo3yIiO4GzgEdE5I9erct4r7rUecPubrYib44tk1H2tnQzpcyKfBB4ObrmfuB+r/6/ya6pZb1FvtvnJCboDnQmSGWUSSVxv6MYrLvGDFJVcR6RkFh3jTmu+lanITCpxOasCQIr8mZQwiFhUkmcPdaSN8exr82Z46iq2FryQWBF3gzapJI86tusyJtj22ct+UCxIm8GbUJRHvvbE37HMAG3r7W3JW9FPgisyJtBqyyK0WhF3hxHfVs35QVR8iJ2IlQQWJE3g1ZZlMeBjh4yGTvr1RzdvtYeG1kTIFbkzaBNKIyRUWjuSvodxQTYvrYe66oJECvyZtAmuJdx299uV4gyR9fUmaCiMOZ3DOOyIm8GbUKR88ZtsCJvjqGpI0F5gRX5oLAibwat8mBL3g6+moGl0hlau1OUFdgkdkFhRd4M2gT3K7h115ijaXGP11hLPjisyJtBKy+IERJsGKU5qqZOp8hbSz44rMibQQuFhNL8KM1dVuTNwJo7nX3DWvLBYUXeDElpfpSWrpTfMUxAHeiwIh80VuTNkDhF3sbJm4E1W3dN4Hh50ZDbReRVEVknIveLSJlX6zLZU5IfpdWKvDmKpt7uGhsnHxhetuQfBxap6hJgI3Crh+syWVJqRd4cQ1NnkmhYKIzZvDVB4VmRV9XHVLW383YVUOPVukz2WHeNOZbmzgRlBTFExO8oxpWtPvn3AY9maV3GQyVukVe1ScrMkdq6U5TEPbuqqBmGEW0NEVkBTB7gqc+p6oPuMp8DUsAvj/F/lgHLAGpra0cSyXisND9KKqN0JtIU5tmb2RyurSdFUdwOugbJiN6lqnrxsZ4XkX8ArgIu0mM0/VR1ObAcoK6uzpqIAVaa77yBW7qSVuTNETp6UhTlWX98kHg5uuZy4DPA1ara6dV6THb1FvnWbuuXN0dq705RZB/+geJln/x3gWLgcRFZKyLf93BdJkt6W+8dPXZClDlSe0/KvuEFjGdbQ1Vne/W/jX96v4q396R9TmKCqL3HWvJBY2e8miGxlrw5GlV1++StyAeJFXkzJIUx5w3cbkXe9NOTypDKqHXXBIwVeTMk1pI3R9P7wV9s4+QDxYq8GZJCt0/eirzpr3ef6P22Z4LBirwZkrxImGhY7MCrOUJbt1Pki6wlHyhW5M2QFeZFrCVvjtC7T9iB12CxIm+GrDAWoSNhRd4crt2KfCBZkTdDVmQteTOA3iJvo2uCxYq8GbLCvDAd1idv+rHRNcFkRd4MWWFexMbJmyN0WEs+kKzImyEriIXptD5500/vt7uCqM1CGSRW5M2Q5UfDdCczfscwAdOdShOLhAiF7KpQQWJF3gxZPBqmO2l98uZw3Yk08YiVlKCxLWKGLB4N02VF3vTTncyQbxfwDhwr8mbI4tEwPdZdY/rpTqWJW3984FiRN0MWj4ZIpDOkM3alRnNIVyJNvhX5wPHy8n9fFZF17lWhHhORKV6ty2RX7xvZ+uVNX92pDHlW5APHy5b87aq6RFVPBh4GvuDhukwWxa3ImwF0J9LkR61zIGg82yKq2trnbiFg3+1zRG9L3g6+mr6sTz6YPD01TURuA94DtAAXHmO5ZcAygNraWi8jmVGQ57bWbKy86as7mSYesSIfNCNqyYvIChF5aYDbNQCq+jlVnQb8Evjo0f6Pqi5X1TpVrauqqhpJJJMF1l1jBtKVTNsQygAaUUteVS8e5KJ3A48AXxzJ+kww2IFXM5DuZIa49ckHjpeja+b0uXs18KpX6zLZdaglb9015pDuhPXJB5GXffJfF5F5QAbYBtzo4bpMFvU98FocthkHjcMOvAaTZ+9QVX2rV//b+Ct+8MBr2uYONwCk0hmSabUDrwFkHWhmyOI2hNL0051yuu7yY1ZSgsa2iBmy3iLfY0XeuHoPwlt3TfBYkTdDFrdx8qafg0XeumsCx4q8GbJo2NltEmkr8saRTDsntMdsPvnAsS1ihizWW+RTVuSNo3df6G0AmOCwLWKGLBQSIiEhaS154+rdF6wlHzy2RcywxCIha8mbg3oOtuTt+q5BY0XeDEs0HLKWvDmo9wPfWvLBY1vEDEssErIDr+agg9011icfOLZFzLDEwiESKbtEgHFYSz64bIuYYbGWvOmrtyVvo2uCx7aIGZZoWEjagVfjStjomsCyLWKGxVrypq+D3TXWkg8c2yJmWGx0jenLWvLBZVvEDEssHDo4NtqYpLXkA8vzLSIinxQRFZFKr9dlsicWsZa8OaS3JR+1lnzgeLpFRGQacAmw3cv1mOxzhlBakTeOgxOUWUs+cLzeIt8CPg3YgOocY33ypi+b1iC4vLyQ99XALlV9wat1GP/Y3DWmr2Q6QywcQsSKfNCI6vAb2SKyApg8wFOfA/4ZuFRVW0RkK1Cnqo1H+T/LgGXu3XnAhmFGqgQGXIfPLNfQWK6hsVxDE9RcMLJs01W1qv+DIyryRyMii4H/ATrdh2qA3cDpqrp31Fd4aL2rVbXOq/8/XJZraCzX0FiuoQlqLvAmW2Q0/1kvVX0RmNh7/3gteWOMMd6wQ+HGGJPDPGnJ96eqM7KxHmB5ltYzVJZraCzX0FiuoQlqLvAgmyd98sYYY4LBumvGCbGxbTnBtqMZqjFV5EWkOog7uYhMEZE8v3P0JyKLReQzABqgr2wiMtCwW9+JyCS/MwxEROaJyBUQuO04XURq/c4xEBGJ+51hIH7UsDFR5EUkT0S+B/wZWC4i1/qdCUBEikTkm8eT4mYAAAnnSURBVMCjwI9E5B3u476+ruL4BnA3EBGRqJ95eolIvojcAfxBRL4lItf4nQkObsdvAY+KyA8Ctn/9P+AeIOZ3nl7udvwWzn7/UxH5sPu47/VERApFZDnwRRGZ4D7me8PQzxrm+0YZpKuBalWdCzwMfEVE5voZSESmAHfhvPnOAR4EelvNfp8KWgVUA6eq6m2qmvQ5T6+bgCpVPRl4APhXEZntZyARmQr8HOe98Hc4b8L/62cmABEpAe4DzlXVU1T1Qb8z9fFPwBRVXQB8CbgF/N/v3db7V4BzgWLgQjdXEL79+FbDAlvkRaSoz10FGgDcnf0PwIdEpMyHXMXury3AJ1T1o6raDkwCHhCRKne5rL62fXIBlAJzVDUhIpe5M4Fels08fXIVuT/DQDnODo6q/hnowGlxlfqRzdUN/EhVb3ZP1LsXWCsiS3zM1Jvr58DLACJyjohcKiJz3PtZf++KSNhdrwDr3IenAI+IyPxs5+mTq8D9tQf4HnA+sAk4VURmuctkvTUflBoWuCIvIrNF5F7gLhG5UkQKgS6g1W09A9wOnAIsdP/G8w3YPxcQVdVtIlIgIjcDnwUKcXb4BaqayXKun7ivVwXQDjwlIl/BmSCuG7hDRP6h346XjVw/FZGr3IfbgDNE5CT3w/BVYC5wgvs32Xi95onI90UkH0BV9wNP9FlkmptnuFNrjFauBPC/gIrIXuBfcWZ0/bOILMzi/nUwl6qm3db6bqBWRP4C/DvOdl0hIpdks5iKyBwR+RlO98fVQLGqbnZPuvwTEMeH1nzgapiqBuaG86HzMPB54BqcT+WvA3nAI8AVQMxd9kvAb33K9Z/Ad9znBJjbZ9mvAI/7lOu/gG+4z30Hp3id5N7/e+C3OG+EbOf6PnAbEHV//gZY627PrwLLs/R6nQs8A2SAz/Vuv37LzAPuy0aeY+Xq8zpeBHyy3/71hwDkKsX51jPZfewm4PdZfM3eDbwCfBh4H/BD4D39lvkgzky4p2YxV+BqWNZ25EG+QFOBXwDhPvefAc4ArgN+gjP/DcB8d8NGfcr1V+Bq9770FgucVuADQL5Puf6G83X1JOBx4H19lv8TTl+qX7kude/PBCrc398KfKz3dfQ414nAImA2sBlnQqf+y9wA3O7+/kFgSRZer/65ZvR5Lt5v2Tk4ffVxv3K5+/tUt4Ce4D6Wh9OomOB1Lnd9lwJv6nP/34Eb3d8j7s9a4F+Aj+B80z4/C7kCV8MC1V2jqruAOpyvpb33/wv4sqr+BtgI3CoinwB+BbymWTioeJRc3wM+5t5XVVUROQv4MfC0qnb5mOvz6kzxvBx4k4jc6n61fgk44FOu/8SZmRRVfV1VD4jI+cDHgR3u455+pVbV9cBmVd2M8wH4FTiif/siYIKI/A54B05Xl6cGyPVlN5eo6sH1i8jZwJ3Aqr6PZzuXu5324nzgfFBE3gv8EXgW51iV51T1MeAxEek9a78b5/gAqppyf24HioCv4Xx4+7Xv+1vDsvGpO8Cn3RGtXA598r0XWNnn8TKcr4Wn4bQgzgO+DbwrALnucfMU4rwBngfeFoBcvwbOdu8vBD4B3BCAXPfgtqZwWvCbgHdkI1ef53q/cRXjtE4v6vf8ozgHO/8+KLlwCtVncLq4rg9QriU4reRHvNi/jpet33K/BK7t99hpwB7gnR7kqgBK+r5OHPoG4VsNGzBrNlbS78X5OvDfwFL3fqjf82GcA0639Hnsp8CiIOcCTg5irgC/XmV+5OrN5v68BXjY/f3t7hvwggDmitDnuE+AcnnaJTnIbCGgALgfZ4SbAJcBeR7m+jywHqcl/qX+2fx6Tx7tlu1hfh9wN8Am4Fo4cmytqqaBTwE3i8ibReRdOP2Cno3BHWGu3ufXBixXUF8vdZ9v9iOXK+M+dwdwjoi0ABfjFIYnApgrqqobA5brjbjn3Y12rqFkcx8rdW9XcuiY1KhnE+dEq9tx9uMLgC8At4jIDO0z2smP9+Qxef0pgnuAzf29HOcCIucDPwD+zn1c+iwTcn9eg9MF8iTOCSGWy3KNOFefZUtxhrGtA86xXP7mGmG2N+EU0HuB87zKhfON6gLcbhn3sR/SZ3CD+1hW9v1B5/fsHzs7xY+Ap3H67Rb2e+5m4D9w+7U41Pfn9QgLyzWOc/VZJoQHI2csly/ZCoEPeZzrJtwuM/e1EJyz3f9Ev65ar/f9od687K65Fadv6v04n8oH50lW1RacIYiCM34bdV+d3p+Wy3J5kavPMhlVXcfos1xZzCYiIVXtUNUfZCHXT9z1Z3Ba9Umcs2x39f2jLOz7QzLqRV4cvcOafqmq61X1NiAhIl/us+hLOJ+Ci0XkUyLyYS/P+rJclstyBSfXaGVTD+bLOUqur/XNpc6wx5lASlUbRORaEblhtLOMhlEv8upI4YxZPbXPUx8BPiIi5e5ynTifzjcAy3DGi3r2CWi5LJflCk6uIGcbbC6csfAF4kyt8BmccweCR0e/H6v3oMMpOBPy5Pd57ofAp/VQf9dr9Dll28ub5bJclis4uYKcbRC5bnV//yxQD3wwW6/ZcG7DvvyfOBejSAPf1j5nbIk7S52qpkXkV0CXqv4f97lPAntV9Rfu/Zg6EzGNGstluSxXcHIFOdtIc4nIUuBVzcLZ7SMyjE+5fJzT03cBq3EnwHKf6zuEbibOfBZ/cZe/AWf41bVDXaflslyWa2zlCnK2Ucg16mdDe3kbygvTe8qu4FwkI4Iz/ek36TOzITAZ+BmwCmfWwZNxZol7DHirBxvMclkuyxWQXEHOFtRcXt8G9cIA38CZa+GS3hfJ/VmNc9T70j6PXQp82PPglstyWa7A5ApytqDmytbteC+O4Myg9gvgnTgz0d1En3khcOazuJsBprDFnfPCg41muSyX5QpIriBnC2qubN6O9wKV4JztVezev4x+s6fhfJ25H+cahm8A3tL74nq4Q1kuy2W5ApIryNmCmiubt2OOk1fVVmArztSZAE/hTKd7lohMdpdJAr/HmTfiTg5NQKXH+t8jYbksl+UKTq4gZwtqrmwazMlQ9wMni0i1OhesXodzKm81gIichHPxjDtUdbaqPuBZWstluSxXUHMFOVtQc2XFYIr8SmA/7iehqq4BTseZwxmci/qep6qf9SKg5bJclmtM5ApytqDmyorI8RZQ1T0i8gDwdRHZjHOJr26g9xJbDd5GtFyWy3IFPVeQswU1V9YMtvMe5yrjPwZeBT46mgcGRnKzXJbLcgUnV5CzBTWX17chTWsgIlHnc8G5UG5QWK6hsVxDY7mGLqjZgprLS8Oeu8YYY0zwZfUar8YYY7LLirwxxuQwK/LGGJPDrMgbY0wOsyJvjDE5zIq8McbkMCvyxhiTw6zIG2NMDvv/qPx6Mwt8buoAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"ratio = pvlib.irradiance.poa_horizontal_ratio(32, 180, ephem_data['apparent_zenith'], ephem_data['azimuth'])\n",
"ratio.plot()\n",
"plt.ylim(-4,4);"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -1959,7 +1928,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
Expand Down
42 changes: 0 additions & 42 deletions pvlib/irradiance.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,48 +232,6 @@ def aoi(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth):
return aoi_value


def poa_horizontal_ratio(surface_tilt, surface_azimuth,
solar_zenith, solar_azimuth):
"""
Calculates the ratio of the beam components of the plane of array
irradiance and the horizontal irradiance.

Input all angles in degrees.

Parameters
----------
surface_tilt : numeric
Panel tilt from horizontal.
surface_azimuth : numeric
Panel azimuth from north.
solar_zenith : numeric
Solar zenith angle.
solar_azimuth : numeric
Solar azimuth angle.

Returns
-------
ratio : numeric
Ratio of the plane of array irradiance to the horizontal plane
irradiance
"""

cos_poa_zen = aoi_projection(surface_tilt, surface_azimuth,
solar_zenith, solar_azimuth)

cos_solar_zenith = tools.cosd(solar_zenith)

# ratio of tilted and horizontal beam irradiance
ratio = cos_poa_zen / cos_solar_zenith

try:
ratio.name = 'poa_ratio'
except AttributeError:
pass

return ratio


def beam_component(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth,
dni):
"""
Expand Down
Loading