-
Notifications
You must be signed in to change notification settings - Fork 9
PowerAPI Reference Implementation and Plugins
License
pwrapi/pwrapi-ref
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This software is a reference implementation of the PowerAPI. The main purpose for the creation of the reference was to test the viability of API functions during the design of the API specification. The reference is also being used to test implementation details such as how to interface with different types of hardware and communication between agents. The reference is a work in progress and only a subset of the functions listed in the specification have been implemented. The main component of this software is libpwr (located in directory pwr). Any application that uses the PowerAPI must link against libpwr.so. It implements the API and is designed as a hardware neutral framework. The framework accesses platform specific power measurement and control via plugins. The plugins are implemented as dynamic libraries (located in directory plugins). There are currently plugins for several platforms as well as a dummy plugin used for development. The dummy plugin is trivial and a good place to look when implementing a plugin for a new platform. libpwr can be configured via a static XML file describing the hardware or via hwloc. XML was chosen for expedient development not performance. libpwr has an object that interfaces with the XML file via TinyXML-2. TinyXML-2 is included with this distribution and is already integrated into this software package. The original software can also be found at "https://github.com/leethomason/tinyxml2". Creating a XML configuration is error prone so support for automatic hierarchy detection was added to the implementation. This automatic method is called hwloc because it uses hwloc to determine the Power object hierarchy. The reference also explores accessing the API via a scripting language such as Python. The Python binding is done via Swig and is located in directory swig. The examples directory contains simple “C” and Python programs that can be examined to get a feeling for how one would use the Power API. Note that the execution of example programs rely on environment variables POWERAPI_CONFIG and POWERAPI_ROOT. POWERAPI_CONFIG tells the PowerAPI library what system configuration file to use. POWERAPI_ROOT tells the PowerAPI library its entry point. Consult the run scripts in examples on how to set these variables. Build ----- The configuration of this code base follows normal autoconf/automake conventions. run: autogen.sh configure --prefix="your install directory" make install Your install directory should look like: volta:~/pwrGIT/pwrapi-ref/build/install> ls bin config examples include lib lib64 script share volta:~/pwrGIT/pwrapi-ref/build/install> Run --- With the above configuration the only thing that will work is the "dummyTest" program. The "dummyTest" program is used to test basic functionality of the implementation and as an example of how to program using the Power API. The "dummyTest" example uses xml configuration and the dummy_dev plugin. The dummy_dev plugin is just a stub and does not interact with hardware. To run "dummyTest". volta:~/pwrGIT/pwrapi-ref/build/install> source examples/script/xml_profile volta:~/pwrGIT/pwrapi-ref/build/install> dummyTest I am a `Node` child plat.cab0.node0.core0 child plat.cab0.node0.core1 PWR_ObjAttrGetValue(PWR_ATTR_ENERGY) value=200000000.000000 ts=`Fri Apr 29 13:08:11 2016` PWR_ObjAttrSetValue(PWR_ATTR_ENERGY) value=25.812000 PWR_ObjAttrGetValues(PWR_ATTR_ENERGY) value=51.624000 ts=`Fri Apr 29 13:08:11 2016` PWR_ObjAttrSetValues(PWR_ATTR_ENERGY) value=100.100000 PWR_ObjAttrGetValue(PWR_ATTR_ENERGY) value=200.200000 ts=`Fri Apr 29 13:08:11 2016` PWR_GrpAttrSetValue(PWR_ATTR_ENERGY) value=0.100000 PWR_ObjAttrGetValue(PWR_ATTR_ENERGY) value=0.200000 ts=`Fri Apr 29 13:08:11 2016` PWR_StatGetValue(PWR_ATTR_ENERGY) value=101.081396 PWR_StatGetValue(PWR_ATTR_ENERGY) start=1461956891.332830 PWR_StatGetValue(PWR_ATTR_ENERGY) stop=1461956892.332830 stat: value=101.129473 start=1461956892.332965 stop=1461956893.332965 stat: value=100.870015 start=1461956892.332970 stop=1461956893.332970 volta:~/pwrGIT/pwrapi-ref/build/install> Running with Hwloc ------------------ If you have "hwloc" installed on your system you can configure via: configure --prefix="your install directory" --with-hwloc="where hwloc is installed" This configuration adds the ability to auto detect the Power object hierarchy as mentioned above. Once built you can run "pwrls". "pwrls" traverses the Power object hierarchy and prints the objects and supported attributes. Note that dummy_dev plugin is used. volta:~/pwrGIT/pwrapi-ref/build/install> source script/hwloc_profile volta:~/pwrGIT/pwrapi-ref/build/install> pwrls name=`plat` type=Platform: Energy name=`plat.node0` type=Node: Energy name=`plat.node0.socket0` type=Socket: Energy name=`plat.node0.socket0.core0` type=Core: Power Energy name=`plat.node0.socket0.core1` type=Core: Power Energy name=`plat.node0.socket0.core2` type=Core: Power Energy name=`plat.node0.socket0.core3` type=Core: Power Energy name=`plat.node0.socket0.core4` type=Core: Power Energy name=`plat.node0.socket0.core5` type=Core: Power Energy name=`plat.node0.socket0.core6` type=Core: Power Energy name=`plat.node0.socket0.core7` type=Core: Power Energy volta:~/pwrGIT/pwrapi-ref/build/install> One thing to note about the above output is that some objects have both Power and Energy attributes and some have only Energy. This is because Energy can be aggregated from children and Power can not. Running with the Linux Power Capping Framework Plugin ------------------------------------------------------ Plugin libpwr_powercap.a is a proof of concept plugin that allows a user application to read energy data through the Linux Power Capping Framework. To use this plugin with hwloc configuration run: source install/script/hwloc_powercap_profile To see what the Power API hierarchy looks like run: [mjleven@node69 script]$ pwrls name=`plat` type=Platform: Energy name=`plat.node0` type=Node: Energy name=`plat.node0.mem0` type=Memory: Energy name=`plat.node0.mem1` type=Memory: Energy name=`plat.node0.socket0` type=Socket: Energy name=`plat.node0.socket1` type=Socket: Energy [mjleven@node69 script]$ The above was run on a dual socket Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz machine. Now lets read the energy: [mjleven@node69 script]$ pwrenergy -o plat.node0.socket0 -s 5 plat.node0.socket0: 22 joules, 0 watts plat.node0.socket0: 46 joules, 24 watts plat.node0.socket0: 67 joules, 21 watts plat.node0.socket0: 79 joules, 12 watts plat.node0.socket0: 92 joules, 12 watts [mjleven@node69 script]$ [mjleven@node69 script]$ pwrenergy -o plat.node0.mem0 -s 5 plat.node0.mem0: 15 joules, 0 watts plat.node0.mem0: 29 joules, 15 watts plat.node0.mem0: 44 joules, 15 watts plat.node0.mem0: 59 joules, 15 watts plat.node0.mem0: 73 joules, 15 watts [mjleven@node69 script]$ [mjleven@node69 script]$ pwrenergy -o plat.node0 -s 4 plat.node0: 49 joules, 0 watts plat.node0: 99 joules, 49 watts plat.node0: 148 joules, 49 watts plat.node0: 198 joules, 50 watts [mjleven@node69 script]$ Note that the powercap plugin does not check for counter wrap around. Note that you need a linux kernel that supports the "Power Capping Framework". Note that this plugin has minimal testing on one machine. Running with the RAPL Plugin ---------------------------- Plugin libpwr_rapldev reads energy data via /dev/cpu/*/msr. You must have elevated privilege to use this plugin. [root@gato2 script]# source hwloc_rapl_profile [root@gato2 script]# pwrls name=`plat` type=Platform: Energy name=`plat.node0` type=Node: Energy name=`plat.node0.mem0` type=Memory: Energy name=`plat.node0.mem1` type=Memory: Energy name=`plat.node0.socket0` type=Socket: Energy name=`plat.node0.socket1` type=Socket: Energy [root@gato2 script]# pwrenergy -o plat.node0 plat.node0: 314996 joules, 0 watts [root@gato2 script]# pwrenergy -o plat.node0 -s 5 plat.node0: 315257 joules, 0 watts plat.node0: 315296 joules, 39 watts plat.node0: 315334 joules, 38 watts plat.node0: 315372 joules, 38 watts plat.node0: 315410 joules, 38 watts [root@gato2 script]# pwrenergy -o plat.node0.mem0 -s 5 plat.node0.mem0: 42660 joules, 0 watts plat.node0.mem0: 42668 joules, 8 watts plat.node0.mem0: 42677 joules, 8 watts plat.node0.mem0: 42685 joules, 8 watts plat.node0.mem0: 42693 joules, 8 watts [root@gato2 script]# pwrenergy -o plat.node0.socket0 -s 5 plat.node0.socket0: 107759 joules, 0 watts plat.node0.socket0: 107772 joules, 13 watts plat.node0.socket0: 107785 joules, 13 watts plat.node0.socket0: 107797 joules, 13 watts plat.node0.socket0: 107810 joules, 13 watts [root@gato2 script]# Note that the energy value for the socket object is derived from adding PP0 and PP1. The energy value for the memory object is based on RAPL DRAM. Debug ----- To debug configure with --enable-debug. At this point the debug code is compiled into the libraries but will not print. To enable printing you must set the environment variable POWERAPI_DEBUG=31. This will turn on all debug. If you have questions or comments email contact-powerapi@sandia.gov.
About
PowerAPI Reference Implementation and Plugins
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published