Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

pymultifit submission #233

Open
14 of 32 tasks
syedalimohsinbukhari opened this issue Jan 21, 2025 · 0 comments
Open
14 of 32 tasks

pymultifit submission #233

syedalimohsinbukhari opened this issue Jan 21, 2025 · 0 comments

Comments

@syedalimohsinbukhari
Copy link

syedalimohsinbukhari commented Jan 21, 2025

Submitting Author: Syed Ali Mohsin Bukhari (@syedalimohsinbukhari)
All current maintainers: (@syedalimohsinbukhari)
Package Name: pymultifit
One-Line Description of Package: A python library for fitting data with multiple models.
Repository Link: https://github.com/syedalimohsinbukhari/pyMultiFit
Version submitted: v1.0.3
EiC: @coatless
Editor: TBD
Reviewer 1: TBD
Reviewer 2: TBD
Archive: TBD
JOSS DOI: TBD
Version accepted: TBD
Date accepted (month/day/year): TBD


Code of Conduct & Commitment to Maintain Package

Description

  • Include a brief paragraph describing what your package does:

pymultifit is built primarily to solve one problem, to fit multiple models (and mixture models) to a given data. Be it multiple Gaussian, Laplacian, or a mixture of such models, this package aims to deal with multi-model data fitting. The package also provides easy-to-use BaseDistribution and BaseFitter classes for respective user-defined functions.

Scope

  • Please indicate which category or categories.
    Check out our package scope page to learn more about our
    scope. (If you are unsure of which category you fit, we suggest you make a pre-submission inquiry):

    • Data retrieval
    • Data extraction
    • Data processing/munging
    • Data deposition
    • Data validation and testing
    • Data visualization1
    • Workflow automation
    • Citation management and bibliometrics
    • Scientific software wrappers
    • Database interoperability

Domain Specific

  • Geospatial
  • Education

Community Partnerships

If your package is associated with an
existing community please check below:

  • For all submissions, explain how and why the package falls under the categories you indicated above. In your explanation, please address the following points (briefly, 1-2 sentences for each):

    • Who is the target audience and what are scientific applications of this package?

Researchers, data scientists, and statisticians who work with datasets requiring multi-model fitting for robust analysis and modeling.

  • Are there other Python packages that accomplish the same thing? If so, how does yours differ?

Apart from scipy, lmfit, and scikit-learn the general purpose scientific packages, there exists PyAutoFit, a Python-based probabilistic programming language built on Bayesian inference. Another notable library is Mixture-Models, which specializes in advanced optimization techniques for fitting various families of mixture models, including Gaussian mixture models and their variants. Both libraries are powerful tools for specific use cases, and I recently came to know about them during my search of existing options.

While these libraries offer robust solutions for hierarchical modeling (PyAutoFit) or a diverse array of pre-defined mixture models (Mixture-Models), pyMultiFit distinguishes itself through its simplicity of use and its focus on simplicity of use. Specifically, it is designed to provide a lightweight and user-friendly framework for fitting multi-model data, including custom mixture models (for example, gaussian + laplace + line). pymultifit also provides easy-to-use base classes that can be modified for any distribution/fitter purposes.

One of the more prominent features of pyMultiFit is the BaseFitter template class that provides custom fitting to any definable function with minimal boilerplate code. All the plotting and boundary functionalities are handled inside the template class so that the user can focus solely on running through multiple models quickly without thinking about how to manage multiple models of the same type or even of different types.

Additionally, the generators template function provides the user with an N-model data generator function with added noise capability to mimic real-life scenarios of whatever distribution the user might want.

Technical checks

For details about the pyOpenSci packaging requirements, see our packaging guide. Confirm each of the following by checking the box. This package:

  • does not violate the Terms of Service of any service it interacts with.
  • uses an OSI approved license.
  • contains a README with instructions for installing the development version.
  • includes documentation with examples for all functions.
  • contains a tutorial with examples of its essential functions and uses.
  • has a test suite.
  • has continuous integration setup, such as GitHub Actions CircleCI, and/or others.

Publication Options

JOSS Checks
  • The package has an obvious research application according to JOSS's definition in their submission requirements. Be aware that completing the pyOpenSci review process does not guarantee acceptance to JOSS. Be sure to read their submission requirements (linked above) if you are interested in submitting to JOSS.
  • The package is not a "minor utility" as defined by JOSS's submission requirements: "Minor ‘utility’ packages, including ‘thin’ API clients, are not acceptable." pyOpenSci welcomes these packages under "Data Retrieval", but JOSS has slightly different criteria.
  • The package contains a paper.md matching JOSS's requirements with a high-level description in the package root or in inst/.
  • The package is deposited in a long-term repository with the DOI:

Note: JOSS accepts our review as theirs. You will NOT need to go through another full review. JOSS will only review your paper.md file. Be sure to link to this pyOpenSci issue when a JOSS issue is opened for your package. Also be sure to tell the JOSS editor that this is a pyOpenSci reviewed package once you reach this step.

Are you OK with Reviewers Submitting Issues and/or pull requests to your Repo Directly?

This option will allow reviewers to open smaller issues that can then be linked to PR's rather than submitting a more dense text based review. It will also allow you to demonstrate addressing the issue via PR links.

  • Yes I am OK with reviewers submitting requested changes as issues to my repo. Reviewers will then link to the issues in their submitted review.

Confirm each of the following by checking the box.

  • I have read the author guide.
  • I expect to maintain this package for at least 2 years and can help find a replacement for the maintainer (team) if needed.

Please fill out our survey

P.S. Have feedback/comments about our review process? Leave a comment here

Editor and Review Templates

The editor template can be found here.

The review template can be found here.

Footnotes

  1. Please fill out a pre-submission inquiry before submitting a data visualization package.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
Status: pre-review-checks
Development

No branches or pull requests

1 participant