Skip to content

interpolate_na with limit argument changes size of chunks #2514

Closed
@cchwala

Description

@cchwala

Code Sample, a copy-pastable example if possible

import pandas as pd
import xarray as xr
import numpy as np

t = pd.date_range(start='2018-01-01', end='2018-02-01', freq='H')
foo = np.sin(np.arange(len(t)))
bar = np.cos(np.arange(len(t)))

foo[1] = np.NaN
bar[2] = np.NaN

ds_test = xr.Dataset(data_vars={'foo': ('time', foo),
                           'bar': ('time', bar)},
                    coords={'time': t}).chunk()

print(ds_test)
print("\n\n### After `.interpolate_na(dim='time')`\n")
print(ds_test.interpolate_na(dim='time'))
print("\n\n### After `.interpolate_na(dim='time', limit=5)`\n")
print(ds_test.interpolate_na(dim='time', limit=5))
print("\n\n### After `.interpolate_na(dim='time', limit=20)`\n")
print(ds_test.interpolate_na(dim='time', limit=20))

Output of the above code. Note the different chunk sizes, depending on the value of limit:

<xarray.Dataset>
Dimensions:  (time: 745)
Coordinates:
  * time     (time) datetime64[ns] 2018-01-01 2018-01-01T01:00:00 ... 2018-02-01
Data variables:
    foo      (time) float64 dask.array<shape=(745,), chunksize=(745,)>
    bar      (time) float64 dask.array<shape=(745,), chunksize=(745,)>


### After `.interpolate_na(dim='time')`

<xarray.Dataset>
Dimensions:  (time: 745)
Coordinates:
  * time     (time) datetime64[ns] 2018-01-01 2018-01-01T01:00:00 ... 2018-02-01
Data variables:
    foo      (time) float64 dask.array<shape=(745,), chunksize=(745,)>
    bar      (time) float64 dask.array<shape=(745,), chunksize=(745,)>


### After `.interpolate_na(dim='time', limit=5)`

<xarray.Dataset>
Dimensions:  (time: 745)
Coordinates:
  * time     (time) datetime64[ns] 2018-01-01 2018-01-01T01:00:00 ... 2018-02-01
Data variables:
    foo      (time) float64 dask.array<shape=(745,), chunksize=(3,)>
    bar      (time) float64 dask.array<shape=(745,), chunksize=(3,)>


### After `.interpolate_na(dim='time', limit=20)`

<xarray.Dataset>
Dimensions:  (time: 745)
Coordinates:
  * time     (time) datetime64[ns] 2018-01-01 2018-01-01T01:00:00 ... 2018-02-01
Data variables:
    foo      (time) float64 dask.array<shape=(745,), chunksize=(10,)>
    bar      (time) float64 dask.array<shape=(745,), chunksize=(10,)>

Problem description

When using xarray.DataArray.interpolate_na() with the limit kwarg this changes the chunksize of the resulting dask.arrays.

Expected Output

The chunksize should not change. Very small chunks which results from typical small values of limit are not optimal for the performance of dask. Also, things like .rolling() will fail if the chunksize is smaller than the window length of the rolling window.

Output of xr.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 2.7.15.final.0 python-bits: 64 OS: Darwin OS-release: 16.7.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: de_DE.UTF-8 LOCALE: None.None

xarray: 0.10.9
pandas: 0.23.3
numpy: 1.13.3
scipy: 1.0.0
netCDF4: 1.4.1
h5netcdf: 0.5.0
h5py: 2.8.0
Nio: None
zarr: None
cftime: 1.0.1
PseudonetCDF: None
rasterio: None
iris: None
bottleneck: 1.2.1
cyordereddict: 1.0.0
dask: 0.19.4
distributed: 1.23.3
matplotlib: 2.2.2
cartopy: 0.16.0
seaborn: 0.8.1
setuptools: 38.5.2
pip: 9.0.1
conda: 4.5.11
pytest: 3.4.2
IPython: 5.5.0
sphinx: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions