-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
87 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
from typing import Optional, Callable, List | ||
|
||
import os | ||
import glob | ||
import os.path as osp | ||
|
||
import torch | ||
from torch_geometric.data import (InMemoryDataset, Data, download_url, | ||
extract_tar) | ||
|
||
|
||
class MalNetTiny(InMemoryDataset): | ||
r"""The MalNet Tiny dataset from the | ||
`"A Large-Scale Database for Graph Representation Learning" | ||
<https://openreview.net/pdf?id=1xDTDk3XPW>`_ paper. | ||
:class:`MalNetTiny` contains 5,000 malicious and benign software function | ||
call graphs across 5 different types. | ||
Args: | ||
root (string): Root directory where the dataset should be saved. | ||
transform (callable, optional): A function/transform that takes in an | ||
:obj:`torch_geometric.data.Data` object and returns a transformed | ||
version. The data object will be transformed before every access. | ||
(default: :obj:`None`) | ||
pre_transform (callable, optional): A function/transform that takes in | ||
an :obj:`torch_geometric.data.Data` object and returns a | ||
transformed version. The data object will be transformed before | ||
being saved to disk. (default: :obj:`None`) | ||
pre_filter (callable, optional): A function that takes in an | ||
:obj:`torch_geometric.data.Data` object and returns a boolean | ||
value, indicating whether the data object should be included in the | ||
final dataset. (default: :obj:`None`) | ||
""" | ||
|
||
url = 'http://malnet.cc.gatech.edu/graph-data/malnet-graphs-tiny.tar.gz' | ||
|
||
def __init__(self, root: str, transform: Optional[Callable] = None, | ||
pre_transform: Optional[Callable] = None, | ||
pre_filter: Optional[Callable] = None): | ||
super().__init__(root, transform, pre_transform, pre_filter) | ||
self.data, self.slices = torch.load(self.processed_paths[0]) | ||
|
||
@property | ||
def raw_file_names(self) -> List[str]: | ||
folders = ['addisplay', 'adware', 'benign', 'downloader', 'trojan'] | ||
return [osp.join('malnet-graphs-tiny', folder) for folder in folders] | ||
|
||
@property | ||
def processed_file_names(self) -> str: | ||
return 'data.pt' | ||
|
||
def download(self): | ||
path = download_url(self.url, self.raw_dir) | ||
extract_tar(path, self.raw_dir) | ||
os.unlink(path) | ||
|
||
def process(self): | ||
data_list = [] | ||
|
||
for y, raw_path in enumerate(self.raw_paths): | ||
raw_path = osp.join(raw_path, os.listdir(raw_path)[0]) | ||
filenames = glob.glob(osp.join(raw_path, '*.edgelist')) | ||
|
||
for filename in filenames: | ||
with open(filename, 'r') as f: | ||
edges = f.read().split('\n')[5:-1] | ||
edge_index = [[int(edge[0]), int(edge[-1])] for edge in edges] | ||
edge_index = torch.tensor(edge_index).t().contiguous() | ||
num_nodes = int(edge_index.max()) + 1 | ||
data = Data(edge_index=edge_index, y=y, num_nodes=num_nodes) | ||
data_list.append(data) | ||
|
||
if self.pre_filter is not None: | ||
data_list = [data for data in data_list if self.pre_filter(data)] | ||
|
||
if self.pre_transform is not None: | ||
data_list = [self.pre_transform(data) for data in data_list] | ||
|
||
torch.save(self.collate(data_list), self.processed_paths[0]) |