-
Notifications
You must be signed in to change notification settings - Fork 3.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* hetero isolated support * update * typo Co-authored-by: rusty1s <matthias.fey@tu-dortmund.de>
- Loading branch information
Showing
2 changed files
with
89 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,18 +1,51 @@ | ||
import torch | ||
|
||
from torch_geometric.data import Data | ||
from torch_geometric.data import Data, HeteroData | ||
from torch_geometric.transforms import RemoveIsolatedNodes | ||
|
||
|
||
def test_remove_isolated_nodes(): | ||
assert RemoveIsolatedNodes().__repr__() == 'RemoveIsolatedNodes()' | ||
assert str(RemoveIsolatedNodes()) == 'RemoveIsolatedNodes()' | ||
|
||
data = Data() | ||
data.x = torch.arange(3) | ||
data.edge_index = torch.tensor([[0, 2], [2, 0]]) | ||
data.edge_attr = torch.arange(2) | ||
|
||
edge_index = torch.tensor([[0, 2, 1, 0], [2, 0, 1, 0]]) | ||
edge_attr = torch.tensor([1, 2, 3, 4]) | ||
x = torch.tensor([[1], [2], [3]]) | ||
data = Data(edge_index=edge_index, edge_attr=edge_attr, x=x) | ||
data = RemoveIsolatedNodes()(data) | ||
|
||
assert len(data) == 3 | ||
assert data.edge_index.tolist() == [[0, 1, 0], [1, 0, 0]] | ||
assert data.edge_attr.tolist() == [1, 2, 4] | ||
assert data.x.tolist() == [[1], [3]] | ||
assert data.x.tolist() == [0, 2] | ||
assert data.edge_index.tolist() == [[0, 1], [1, 0]] | ||
assert data.edge_attr.tolist() == [0, 1] | ||
|
||
|
||
def test_remove_isolated_nodes_in_hetero_data(): | ||
data = HeteroData() | ||
|
||
data['p'].x = torch.arange(6) | ||
data['a'].x = torch.arange(6) | ||
data['i'].num_nodes = 4 | ||
|
||
# isolated paper nodes: {4} | ||
# isolated author nodes: {3, 4, 5} | ||
# isolated institution nodes: {0, 1, 2, 3} | ||
data['p', '1', 'p'].edge_index = torch.tensor([[0, 1, 2], [0, 1, 3]]) | ||
data['p', '2', 'a'].edge_index = torch.tensor([[1, 3, 5], [0, 1, 2]]) | ||
data['p', '2', 'a'].edge_attr = torch.arange(3) | ||
data['p', '3', 'a'].edge_index = torch.tensor([[5], [2]]) | ||
|
||
data = RemoveIsolatedNodes()(data) | ||
|
||
assert len(data) == 4 | ||
assert data['p'].num_nodes == 5 | ||
assert data['a'].num_nodes == 3 | ||
assert data['i'].num_nodes == 0 | ||
|
||
assert data['p'].x.tolist() == [0, 1, 2, 3, 5] | ||
assert data['a'].x.tolist() == [0, 1, 2] | ||
|
||
assert data['1'].edge_index.tolist() == [[0, 1, 2], [0, 1, 3]] | ||
assert data['2'].edge_index.tolist() == [[1, 3, 4], [0, 1, 2]] | ||
assert data['2'].edge_attr.tolist() == [0, 1, 2] | ||
assert data['3'].edge_index.tolist() == [[4], [2]] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,28 +1,63 @@ | ||
import re | ||
from collections import defaultdict | ||
from typing import Union | ||
|
||
import torch | ||
|
||
from torch_geometric.data import Data, HeteroData | ||
from torch_geometric.data.datapipes import functional_transform | ||
from torch_geometric.transforms import BaseTransform | ||
from torch_geometric.utils import remove_isolated_nodes | ||
|
||
|
||
@functional_transform('remove_isolated_nodes') | ||
class RemoveIsolatedNodes(BaseTransform): | ||
r"""Removes isolated nodes from the graph | ||
(functional name: :obj:`remove_isolated_nodes`).""" | ||
def __call__(self, data): | ||
num_nodes = data.num_nodes | ||
out = remove_isolated_nodes(data.edge_index, data.edge_attr, num_nodes) | ||
data.edge_index, data.edge_attr, mask = out | ||
def __call__(self, data: Union[Data, HeteroData]): | ||
# Gather all nodes that occur in at least one edge (across all types): | ||
n_id_dict = defaultdict(list) | ||
for store in data.edge_stores: | ||
if 'edge_index' not in store: | ||
continue | ||
|
||
if store._key is None: | ||
src = dst = None | ||
else: | ||
src, _, dst = store._key | ||
|
||
n_id_dict[src].append(store.edge_index[0]) | ||
n_id_dict[dst].append(store.edge_index[1]) | ||
|
||
n_id_dict = {k: torch.cat(v).unique() for k, v in n_id_dict.items()} | ||
|
||
n_map_dict = {} | ||
for store in data.node_stores: | ||
if store._key not in n_id_dict: | ||
n_id_dict[store._key] = torch.empty((0, ), dtype=torch.long) | ||
|
||
if hasattr(data, '__num_nodes__'): | ||
data.num_nodes = int(mask.sum()) | ||
idx = n_id_dict[store._key] | ||
mapping = idx.new_zeros(data.num_nodes) | ||
mapping[idx] = torch.arange(idx.numel(), device=mapping.device) | ||
n_map_dict[store._key] = mapping | ||
|
||
for key, item in data: | ||
if bool(re.search('edge', key)): | ||
for store in data.edge_stores: | ||
if 'edge_index' not in store: | ||
continue | ||
if torch.is_tensor(item) and item.size(0) == num_nodes: | ||
data[key] = item[mask] | ||
|
||
if store._key is None: | ||
src = dst = None | ||
else: | ||
src, _, dst = store._key | ||
|
||
row = n_map_dict[src][store.edge_index[0]] | ||
col = n_map_dict[dst][store.edge_index[1]] | ||
store.edge_index = torch.stack([row, col], dim=0) | ||
|
||
for store in data.node_stores: | ||
for key, value in store.items(): | ||
if key == 'num_nodes': | ||
store.num_nodes = n_id_dict[store._key].numel() | ||
|
||
elif store.is_node_attr(key): | ||
store[key] = value[n_id_dict[store._key]] | ||
|
||
return data |