Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MalNetTiny dataset #3472

Merged
merged 1 commit into from
Nov 10, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions torch_geometric/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@
from .twitch import Twitch
from .airports import Airports
from .ba_shapes import BAShapes
from .malnet_tiny import MalNetTiny

__all__ = [
'KarateClub',
Expand Down Expand Up @@ -134,6 +135,7 @@
'Twitch',
'Airports',
'BAShapes',
'MalNetTiny',
]

classes = __all__
10 changes: 6 additions & 4 deletions torch_geometric/datasets/hgb_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,8 +49,7 @@ class HGBDataset(InMemoryDataset):

def __init__(self, root: str, name: str,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
pre_filter: Optional[Callable] = None):
pre_transform: Optional[Callable] = None):
self.name = name.lower()
assert self.name in set(self.names.keys())
super().__init__(root, transform, pre_transform)
Expand Down Expand Up @@ -114,7 +113,7 @@ def process(self):
src, dst = n_types[int(src)], n_types[int(dst)]
rel = rel.split('-')[1]
e_types[key] = (src, rel, dst)
else:
else: # Link prediction:
raise NotImplementedError

# Extract node information:
Expand Down Expand Up @@ -180,9 +179,12 @@ def process(self):
n_id, n_type = mapping_dict[int(y[0])], n_types[int(y[2])]
data[n_type].test_mask[n_id] = True

else:
else: # Link prediction:
raise NotImplementedError

if self.pre_transform is not None:
data = self.pre_transform(data)

torch.save(self.collate([data]), self.processed_paths[0])

def __repr__(self) -> str:
Expand Down
79 changes: 79 additions & 0 deletions torch_geometric/datasets/malnet_tiny.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
from typing import Optional, Callable, List

import os
import glob
import os.path as osp

import torch
from torch_geometric.data import (InMemoryDataset, Data, download_url,
extract_tar)


class MalNetTiny(InMemoryDataset):
r"""The MalNet Tiny dataset from the
`"A Large-Scale Database for Graph Representation Learning"
<https://openreview.net/pdf?id=1xDTDk3XPW>`_ paper.
:class:`MalNetTiny` contains 5,000 malicious and benign software function
call graphs across 5 different types.

Args:
root (string): Root directory where the dataset should be saved.
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
pre_filter (callable, optional): A function that takes in an
:obj:`torch_geometric.data.Data` object and returns a boolean
value, indicating whether the data object should be included in the
final dataset. (default: :obj:`None`)
"""

url = 'http://malnet.cc.gatech.edu/graph-data/malnet-graphs-tiny.tar.gz'

def __init__(self, root: str, transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
pre_filter: Optional[Callable] = None):
super().__init__(root, transform, pre_transform, pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])

@property
def raw_file_names(self) -> List[str]:
folders = ['addisplay', 'adware', 'benign', 'downloader', 'trojan']
return [osp.join('malnet-graphs-tiny', folder) for folder in folders]

@property
def processed_file_names(self) -> str:
return 'data.pt'

def download(self):
path = download_url(self.url, self.raw_dir)
extract_tar(path, self.raw_dir)
os.unlink(path)

def process(self):
data_list = []

for y, raw_path in enumerate(self.raw_paths):
raw_path = osp.join(raw_path, os.listdir(raw_path)[0])
filenames = glob.glob(osp.join(raw_path, '*.edgelist'))

for filename in filenames:
with open(filename, 'r') as f:
edges = f.read().split('\n')[5:-1]
edge_index = [[int(edge[0]), int(edge[-1])] for edge in edges]
edge_index = torch.tensor(edge_index).t().contiguous()
num_nodes = int(edge_index.max()) + 1
data = Data(edge_index=edge_index, y=y, num_nodes=num_nodes)
data_list.append(data)

if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]

if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]

torch.save(self.collate(data_list), self.processed_paths[0])