Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Elliptic Bitcoin Illicit Activity Dataset #3815

Merged
merged 3 commits into from
Jan 8, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions torch_geometric/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@
from .sbm_dataset import StochasticBlockModelDataset
from .sbm_dataset import RandomPartitionGraphDataset
from .linkx_dataset import LINKXDataset
from .elliptic import EllipticBitcoinDataset

import torch_geometric.datasets.utils # noqa

Expand Down Expand Up @@ -155,6 +156,7 @@
'StochasticBlockModelDataset',
'RandomPartitionGraphDataset',
'LINKXDataset',
'EllipticBitcoinDataset',
]

classes = __all__
115 changes: 115 additions & 0 deletions torch_geometric/datasets/elliptic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
from typing import Optional, Callable, List

import os
import os.path as osp

import torch

from torch_geometric.data import InMemoryDataset, download_url, Data


class EllipticBitcoinDataset(InMemoryDataset):
r"""The Elliptic Bitcoin dataset of Bitcoin transactions from the
`"Anti-Money Laundering in Bitcoin: Experimenting with Graph Convolutional
Networks for Financial Forensics" <https://arxiv.org/abs/1908.02591>`_
paper.

:class:`EllipticBitcoinDataset` maps Bitcoin transactions to real entities
belonging to licit categories (exchanges, wallet providers, miners,
licit services, etc.) versus illicit ones (scams, malware, terrorist
organizations, ransomware, Ponzi schemes, etc.)

There exists 203,769 node transactions and 234,355 directed edge payments
flows, with two percent of nodes (4,545) labelled as illicit, and
twenty-one percent of nodes (42,019) labelled as licit.
The remaining transactions are unknown.

Args:
root (string): Root directory where the dataset should be saved.
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)

Stats:
.. list-table::
:widths: 10 10 10 10
:header-rows: 1

* - #nodes
- #edges
- #features
- #classes
* - 203,769
- 234,355
- 165
- 2
"""
def __init__(self, root: str, transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None):
super().__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])

@property
def raw_file_names(self) -> List[str]:
return [
'elliptic_txs_features.csv',
'elliptic_txs_edgelist.csv',
'elliptic_txs_classes.csv',
]

@property
def processed_file_names(self) -> str:
return 'data.pt'

def download(self):
download_url('https://tinyurl.com/9b7f8efe', self.raw_dir)
os.rename(osp.join(self.raw_dir, '9b7f8efe'), self.raw_paths[0])
download_url('https://tinyurl.com/mr3v9d3f', self.raw_dir)
os.rename(osp.join(self.raw_dir, 'mr3v9d3f'), self.raw_paths[1])
download_url('https://tinyurl.com/2p8up25z', self.raw_dir)
os.rename(osp.join(self.raw_dir, '2p8up25z'), self.raw_paths[2])

def process(self):
import pandas as pd

df_features = pd.read_csv(self.raw_paths[0], header=None)
df_edges = pd.read_csv(self.raw_paths[1])
df_classes = pd.read_csv(self.raw_paths[2])

columns = {0: 'txId', 1: 'time_step'}
df_features = df_features.rename(columns=columns)
x = torch.from_numpy(df_features.loc[:, 2:].values).to(torch.float)

# There exists 3 different classes in the dataset:
# 0=licit, 1=illicit, 2=unknown
mapping = {'unknown': 2, '1': 1, '2': 0}
df_classes['class'] = df_classes['class'].map(mapping)
y = torch.from_numpy(df_classes['class'].values)

mapping = {idx: i for i, idx in enumerate(df_features['txId'].values)}
df_edges['txId1'] = df_edges['txId1'].map(mapping)
df_edges['txId2'] = df_edges['txId2'].map(mapping)
edge_index = torch.from_numpy(df_edges.values).t().contiguous()

# Timestamp based split:
# train_mask: 1 - 34 time_step, test_mask: 35-49 time_step
time_step = torch.from_numpy(df_features['time_step'].values)
train_mask = (time_step) < 35 & (y != 2)
test_mask = (time_step) >= 35 & (y != 2)

data = Data(x=x, edge_index=edge_index, y=y, train_mask=train_mask,
test_mask=test_mask)

if self.pre_transform is not None:
data = self.pre_transform(data)

torch.save(self.collate([data]), self.processed_paths[0])

@property
def num_classes(self) -> int:
return 2