Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

VirtualNode transform #4163

Merged
merged 3 commits into from
Feb 27, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 38 additions & 0 deletions test/transforms/test_virtual_node.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
import torch

from torch_geometric.data import Data
from torch_geometric.transforms import VirtualNode


def test_virtual_node():
assert str(VirtualNode()) == 'VirtualNode()'

x = torch.randn(4, 16)
edge_index = torch.tensor([[2, 0, 2], [3, 1, 0]])
edge_weight = torch.rand(edge_index.size(1))
edge_attr = torch.randn(edge_index.size(1), 8)

data = Data(x=x, edge_index=edge_index, edge_weight=edge_weight,
edge_attr=edge_attr, num_nodes=x.size(0))

data = VirtualNode()(data)
assert len(data) == 6

assert data.x.size() == (5, 16)
assert torch.allclose(data.x[:4], x)
assert data.x[4:].abs().sum() == 0

assert data.edge_index.tolist() == [[2, 0, 2, 0, 1, 2, 3, 4, 4, 4, 4],
[3, 1, 0, 4, 4, 4, 4, 0, 1, 2, 3]]

assert data.edge_weight.size() == (11, )
assert torch.allclose(data.edge_weight[:3], edge_weight)
assert data.edge_weight[3:].abs().sum() == 8

assert data.edge_attr.size() == (11, 8)
assert torch.allclose(data.edge_attr[:3], edge_attr)
assert data.edge_attr[3:].abs().sum() == 0

assert data.num_nodes == 5

assert data.edge_type.tolist() == [0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]
2 changes: 2 additions & 0 deletions torch_geometric/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
from .random_link_split import RandomLinkSplit
from .add_metapaths import AddMetaPaths
from .largest_connected_components import LargestConnectedComponents
from .virtual_node import VirtualNode

__all__ = [
'BaseTransform',
Expand Down Expand Up @@ -98,6 +99,7 @@
'RandomLinkSplit',
'AddMetaPaths',
'LargestConnectedComponents',
'VirtualNode',
]

classes = __all__
3 changes: 0 additions & 3 deletions torch_geometric/transforms/add_self_loops.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,3 @@ def __call__(self, data: Union[Data, HeteroData]):
setattr(store, self.attr, edge_weight)

return data

def __repr__(self) -> str:
return f'{self.__class__.__name__}()'
64 changes: 64 additions & 0 deletions torch_geometric/transforms/virtual_node.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
import torch
from torch import Tensor

from torch_geometric.data import Data
from torch_geometric.transforms import BaseTransform


class VirtualNode(BaseTransform):
r"""Appends a virtual node to the given homogeneous graph that is connected
to all other nodes, as described in the `"Neural Message Passing for
Quantum Chemistry" <https://arxiv.org/abs/1704.01212>`_ paper.
The virtual node serves as a global scratch space that each node both reads
from and writes to in every step of message passing.
This allows information to travel long distances during the propagation
phase.

Node and edge features of the virtual node are added as zero-filled input
features.
Furthermore, special edge types will be added both for in-coming and
out-going information to and from the virtual node.
"""
def __call__(self, data: Data) -> Data:
num_nodes, (row, col) = data.num_nodes, data.edge_index
edge_type = data.get('edge_type', torch.zeros_like(row))

arange = torch.arange(num_nodes, device=row.device)
full = row.new_full((num_nodes, ), num_nodes)
row = torch.cat([row, arange, full], dim=0)
col = torch.cat([col, full, arange], dim=0)
edge_index = torch.stack([row, col], dim=0)

new_type = edge_type.new_full((num_nodes, ), int(edge_type.max()) + 1)
edge_type = torch.cat([edge_type, new_type, new_type + 1], dim=0)

for key, value in data.items():
if key == 'edge_index' or key == 'edge_type':
continue

if isinstance(value, Tensor):
dim = data.__cat_dim__(key, value)
size = list(value.size())

fill_value = None
if key == 'edge_weight':
size[dim] = 2 * num_nodes
fill_value = 1.
elif data.is_edge_attr(key):
size[dim] = 2 * num_nodes
fill_value = 0.
elif data.is_node_attr(key):
size[dim] = 1
fill_value = 0.

if fill_value is not None:
new_value = value.new_full(size, fill_value)
data[key] = torch.cat([value, new_value], dim=dim)

data.edge_index = edge_index
data.edge_type = edge_type

if 'num_nodes' in data:
data.num_nodes = data.num_nodes + 1

return data