Closed
Description
If you have questions about a specific use case, or you are not sure whether this is a bug or not, please post it to our discourse channel: https://discourse.pymc.io
Description of your problem
Sampling the prior predictive distribution of an LKJ distribution gives an error
Please provide a minimal, self-contained, and reproducible example.
import pymc3 as pm
with pm.Model() as model:
sd_dist = pm.HalfCauchy.dist(beta=1, shape=10)
chol_packed = pm.LKJCholeskyCov(name='chol_packed', n=20,
eta=1.0, sd_dist=sd_dist)
chol = pm.expand_packed_triangular(20, chol_packed)
with model:
pm.sample_prior_predictive(50)
Please provide the full traceback.
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-5-7300cc3c60ce> in <module>()
8
9 with model:
---> 10 pm.sample_prior_predictive(50)
11
~/anaconda3/lib/python3.6/site-packages/pymc3-3.5-py3.6.egg/pymc3/sampling.py in sample_prior_predictive(samples, model, vars, random_seed)
1332 names = get_default_varnames(model.named_vars, include_transformed=False)
1333 # draw_values fails with auto-transformed variables. transform them later!
-> 1334 values = draw_values([model[name] for name in names], size=samples)
1335
1336 data = {k: v for k, v in zip(names, values)}
~/anaconda3/lib/python3.6/site-packages/pymc3-3.5-py3.6.egg/pymc3/distributions/distribution.py in draw_values(params, point, size)
310 while to_eval or missing_inputs:
311 if to_eval == missing_inputs:
--> 312 raise ValueError('Cannot resolve inputs for {}'.format([str(params[j]) for j in to_eval]))
313 to_eval = set(missing_inputs)
314 missing_inputs = set()
ValueError: Cannot resolve inputs for ['chol_packed']
Please provide any additional information below.
Versions and main components
- PyMC3 Version: git commit: cd453bc (master branch, bleeding edge)
- Theano Version: 1.03
- Python Version: 3.06
- Operating system: osX
- How did you install PyMC3: (conda/pip) git clone