Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Parametrize Binomial and Categorical distributions via logit_p #5637

Merged
merged 5 commits into from
Mar 21, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions RELEASE-NOTES.md
Original file line number Diff line number Diff line change
Expand Up @@ -133,6 +133,7 @@ This includes API changes we did not warn about since at least `3.11.0` (2021-01
- Adding support for blackjax's NUTS sampler `pymc.sampling_jax` (see [#5477](ihttps://github.com/pymc-devs/pymc/pull/5477))
- `pymc.sampling_jax` samplers support `log_likelihood`, `observed_data`, and `sample_stats` in returned InferenceData object (see [#5189](https://github.com/pymc-devs/pymc/pull/5189))
- Adding support for `pm.Deterministic` in `pymc.sampling_jax` (see [#5182](https://github.com/pymc-devs/pymc/pull/5182))
- Added an alternative parametrization, `logit_p` to `pm.Binomial` and `pm.Categorical` distributions (see [5637](https://github.com/pymc-devs/pymc/pull/5637)).
- ...


Expand Down
30 changes: 25 additions & 5 deletions pymc/distributions/discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,15 +106,25 @@ class Binomial(Discrete):

Parameters
----------
n: int
n : int
Number of Bernoulli trials (n >= 0).
p: float
p : float
Probability of success in each trial (0 < p < 1).
logit_p : float
Alternative log odds for the probability of success.
"""
rv_op = binomial

@classmethod
def dist(cls, n, p, *args, **kwargs):
def dist(cls, n, p=None, logit_p=None, *args, **kwargs):
if p is not None and logit_p is not None:
raise ValueError("Incompatible parametrization. Can't specify both p and logit_p.")
elif p is None and logit_p is None:
raise ValueError("Incompatible parametrization. Must specify either p or logit_p.")

if logit_p is not None:
p = at.sigmoid(logit_p)

n = at.as_tensor_variable(intX(n))
p = at.as_tensor_variable(floatX(p))
return super().dist([n, p], **kwargs)
Expand Down Expand Up @@ -1245,14 +1255,24 @@ class Categorical(Discrete):

Parameters
----------
p: array of floats
p : array of floats
p > 0 and the elements of p must sum to 1. They will be automatically
rescaled otherwise.
logit_p : float
Alternative log odds for the probability of success.
"""
rv_op = categorical

@classmethod
def dist(cls, p, **kwargs):
def dist(cls, p=None, logit_p=None, **kwargs):
if p is not None and logit_p is not None:
raise ValueError("Incompatible parametrization. Can't specify both p and logit_p.")
elif p is None and logit_p is None:
raise ValueError("Incompatible parametrization. Must specify either p or logit_p.")

if logit_p is not None:
p = pm.math.softmax(logit_p, axis=-1)

if isinstance(p, np.ndarray) or isinstance(p, list):
if (np.asarray(p) < 0).any():
raise ValueError(f"Negative `p` parameters are not valid, got: {p}")
Expand Down
45 changes: 44 additions & 1 deletion pymc/tests/test_distributions_random.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ def random_polyagamma(*args, **kwargs):
raise RuntimeError("polyagamma package is not installed!")


from scipy.special import expit
from scipy.special import expit, softmax

import pymc as pm

Expand Down Expand Up @@ -1005,6 +1005,25 @@ class TestBinomial(BaseTestDistributionRandom):
checks_to_run = ["check_pymc_params_match_rv_op"]


class TestLogitBinomial(BaseTestDistributionRandom):
pymc_dist = pm.Binomial
pymc_dist_params = {"n": 100, "logit_p": 0.5}
expected_rv_op_params = {"n": 100, "p": expit(0.5)}
tests_to_run = ["check_pymc_params_match_rv_op"]

@pytest.mark.parametrize(
"n, p, logit_p, expected",
[
(5, None, None, "Must specify either p or logit_p."),
(5, 0.5, 0.5, "Can't specify both p and logit_p."),
],
)
def test_binomial_init_fail(self, n, p, logit_p, expected):
with pm.Model() as model:
with pytest.raises(ValueError, match=f"Incompatible parametrization. {expected}"):
pm.Binomial("x", n=n, p=p, logit_p=logit_p)


class TestNegativeBinomial(BaseTestDistributionRandom):
pymc_dist = pm.NegativeBinomial
pymc_dist_params = {"n": 100, "p": 0.33}
Expand Down Expand Up @@ -1410,6 +1429,30 @@ class TestCategorical(BaseTestDistributionRandom):
]


class TestLogitCategorical(BaseTestDistributionRandom):
pymc_dist = pm.Categorical
pymc_dist_params = {"logit_p": np.array([[0.28, 0.62, 0.10], [0.28, 0.62, 0.10]])}
expected_rv_op_params = {
"p": softmax(np.array([[0.28, 0.62, 0.10], [0.28, 0.62, 0.10]]), axis=-1)
}
tests_to_run = [
"check_pymc_params_match_rv_op",
"check_rv_size",
]

@pytest.mark.parametrize(
"p, logit_p, expected",
[
(None, None, "Must specify either p or logit_p."),
(0.5, 0.5, "Can't specify both p and logit_p."),
],
)
def test_categorical_init_fail(self, p, logit_p, expected):
with pm.Model() as model:
with pytest.raises(ValueError, match=f"Incompatible parametrization. {expected}"):
pm.Categorical("x", p=p, logit_p=logit_p)


class TestGeometric(BaseTestDistributionRandom):
pymc_dist = pm.Geometric
pymc_dist_params = {"p": 0.9}
Expand Down