Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a flag to LKJCorr to return the unpacked correlation matrix #7100

Merged
merged 2 commits into from
Jan 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
133 changes: 90 additions & 43 deletions pymc/distributions/multivariate.py
Original file line number Diff line number Diff line change
Expand Up @@ -1505,6 +1505,7 @@
def _random_corr_matrix(cls, rng, n, eta, flat_size):
# original implementation in R see:
# https://github.com/rmcelreath/rethinking/blob/master/R/distributions.r

beta = eta - 1.0 + n / 2.0
r12 = 2.0 * stats.beta.rvs(a=beta, b=beta, size=flat_size, random_state=rng) - 1.0
P = np.full((flat_size, n, n), np.eye(n))
Expand All @@ -1531,48 +1532,8 @@
return super().log_jac_det(*args).sum(-1)


class LKJCorr(BoundedContinuous):
r"""
The LKJ (Lewandowski, Kurowicka and Joe) log-likelihood.

The LKJ distribution is a prior distribution for correlation matrices.
If eta = 1 this corresponds to the uniform distribution over correlation
matrices. For eta -> oo the LKJ prior approaches the identity matrix.

======== ==============================================
Support Upper triangular matrix with values in [-1, 1]
======== ==============================================

Parameters
----------
n : tensor_like of int
Dimension of the covariance matrix (n > 1).
eta : tensor_like of float
The shape parameter (eta > 0) of the LKJ distribution. eta = 1
implies a uniform distribution of the correlation matrices;
larger values put more weight on matrices with few correlations.

Notes
-----
This implementation only returns the values of the upper triangular
matrix excluding the diagonal. Here is a schematic for n = 5, showing
the indexes of the elements::

[[- 0 1 2 3]
[- - 4 5 6]
[- - - 7 8]
[- - - - 9]
[- - - - -]]


References
----------
.. [LKJ2009] Lewandowski, D., Kurowicka, D. and Joe, H. (2009).
"Generating random correlation matrices based on vines and
extended onion method." Journal of multivariate analysis,
100(9), pp.1989-2001.
"""

# Returns list of upper triangular values
class _LKJCorr(BoundedContinuous):
rv_op = lkjcorr

@classmethod
Expand Down Expand Up @@ -1631,11 +1592,97 @@
)


@_default_transform.register(LKJCorr)
@_default_transform.register(_LKJCorr)
def lkjcorr_default_transform(op, rv):
return MultivariateIntervalTransform(floatX(-1.0), floatX(1.0))


class LKJCorr:
r"""
The LKJ (Lewandowski, Kurowicka and Joe) log-likelihood.

The LKJ distribution is a prior distribution for correlation matrices.
If eta = 1 this corresponds to the uniform distribution over correlation
matrices. For eta -> oo the LKJ prior approaches the identity matrix.

======== ==============================================
Support Upper triangular matrix with values in [-1, 1]
======== ==============================================

Parameters
----------
n : tensor_like of int
Dimension of the covariance matrix (n > 1).
eta : tensor_like of float
The shape parameter (eta > 0) of the LKJ distribution. eta = 1
implies a uniform distribution of the correlation matrices;
larger values put more weight on matrices with few correlations.
return_matrix : bool, default=False
If True, returns the full correlation matrix.
False only returns the values of the upper triangular matrix excluding
diagonal in a single vector of length n(n-1)/2 for memory efficiency

Notes
-----
This is mainly useful if you want the standard deviations to be fixed, as
LKJCholsekyCov is optimized for the case where they come from a distribution.

Examples
--------
.. code:: python

with pm.Model() as model:

# Define the vector of fixed standard deviations
sds = 3*np.ones(10)

corr = pm.LKJCorr(
'corr', eta=4, n=10, return_matrix=True
)

# Define a new MvNormal with the given correlation matrix
vals = sds*pm.MvNormal('vals', mu=np.zeros(10), cov=corr, shape=10)

# Or transform an uncorrelated normal distribution:
vals_raw = pm.Normal('vals_raw', shape=10)
chol = pt.linalg.cholesky(corr)
vals = sds*pt.dot(chol,vals_raw)

# The matrix is internally still sampled as a upper triangular vector
# If you want access to it in matrix form in the trace, add
pm.Deterministic('corr_mat', corr)


References
----------
.. [LKJ2009] Lewandowski, D., Kurowicka, D. and Joe, H. (2009).
"Generating random correlation matrices based on vines and
extended onion method." Journal of multivariate analysis,
100(9), pp.1989-2001.
"""

def __new__(cls, name, n, eta, *, return_matrix=False, **kwargs):
c_vec = _LKJCorr(name, eta=eta, n=n, **kwargs)
if not return_matrix:
return c_vec
else:
return cls.vec_to_corr_mat(c_vec, n)

@classmethod
def dist(cls, n, eta, *, return_matrix=False, **kwargs):
c_vec = _LKJCorr.dist(eta=eta, n=n, **kwargs)
if not return_matrix:
return c_vec
else:
return cls.vec_to_corr_mat(c_vec, n)

@classmethod
def vec_to_corr_mat(cls, vec, n):
tri = pt.zeros(pt.concatenate([vec.shape[:-1], (n, n)]))

Check warning on line 1681 in pymc/distributions/multivariate.py

View check run for this annotation

Codecov / codecov/patch

pymc/distributions/multivariate.py#L1679-L1681

Added lines #L1679 - L1681 were not covered by tests
tri = pt.subtensor.set_subtensor(tri[(...,) + np.triu_indices(n, 1)], vec)
return tri + pt.moveaxis(tri, -2, -1) + pt.diag(pt.ones(n))

Check warning on line 1683 in pymc/distributions/multivariate.py

View check run for this annotation

Codecov / codecov/patch

pymc/distributions/multivariate.py#L1683

Added line #L1683 was not covered by tests


class MatrixNormalRV(RandomVariable):
name = "matrixnormal"
ndim_supp = 2
Expand Down
27 changes: 22 additions & 5 deletions tests/distributions/test_multivariate.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@
from pymc.distributions.multivariate import (
MultivariateIntervalTransform,
_LKJCholeskyCov,
_LKJCorr,
_OrderedMultinomial,
posdef,
quaddist_matrix,
Expand Down Expand Up @@ -558,7 +559,7 @@ def test_wishart(self, n):
@pytest.mark.parametrize("x,eta,n,lp", LKJ_CASES)
def test_lkjcorr(self, x, eta, n, lp):
with pm.Model() as model:
pm.LKJCorr("lkj", eta=eta, n=n, transform=None)
pm.LKJCorr("lkj", eta=eta, n=n, transform=None, return_matrix=False)

point = {"lkj": x}
decimals = select_by_precision(float64=6, float32=4)
Expand Down Expand Up @@ -1330,7 +1331,7 @@ def test_kronecker_normal_moment(self, mu, covs, size, expected):
)
def test_lkjcorr_moment(self, n, eta, size, expected):
with pm.Model() as model:
pm.LKJCorr("x", n=n, eta=eta, size=size)
pm.LKJCorr("x", n=n, eta=eta, size=size, return_matrix=False)
assert_moment_is_expected(model, expected)

@pytest.mark.parametrize(
Expand Down Expand Up @@ -1469,6 +1470,22 @@ def test_with_cov_rv(

assert prior["mv"].shape == (10, 4, 3)

def test_with_lkjcorr_matrix(
self,
):
with pm.Model() as model:
corr = pm.LKJCorr("corr", n=3, eta=2, return_matrix=True)
pm.Deterministic("corr_mat", corr)
mv = pm.MvNormal("mv", 0.0, cov=corr, size=4)
prior = pm.sample_prior_predictive(samples=10, return_inferencedata=False)

assert prior["corr_mat"].shape == (10, 3, 3) # square
assert (prior["corr_mat"][:, [0, 1, 2], [0, 1, 2]] == 1.0).all() # 1.0 on diagonal
assert (prior["corr_mat"] == prior["corr_mat"].transpose(0, 2, 1)).all() # symmetric
assert (
prior["corr_mat"].max() <= 1.0 and prior["corr_mat"].min() >= -1.0
) # constrained between -1 and 1

def test_issue_3758(self):
np.random.seed(42)
ndim = 50
Expand Down Expand Up @@ -2137,7 +2154,7 @@ class TestOrderedMultinomial(BaseTestDistributionRandom):


class TestLKJCorr(BaseTestDistributionRandom):
pymc_dist = pm.LKJCorr
pymc_dist = _LKJCorr
pymc_dist_params = {"n": 3, "eta": 1.0}
expected_rv_op_params = {"n": 3, "eta": 1.0}

Expand Down Expand Up @@ -2165,7 +2182,7 @@ def ref_rand(size, n, eta):
return (st.beta.rvs(size=(size, shape), a=beta, b=beta) - 0.5) * 2

continuous_random_tester(
pm.LKJCorr,
_LKJCorr,
{
"n": Domain([2, 10, 50], edges=(None, None)),
"eta": Domain([1.0, 10.0, 100.0], edges=(None, None)),
Expand All @@ -2190,7 +2207,7 @@ def ref_rand(size, n, eta):
)
def test_LKJCorr_default_transform(shape):
with pm.Model() as m:
x = pm.LKJCorr("x", n=2, eta=1, shape=shape)
x = pm.LKJCorr("x", n=2, eta=1, shape=shape, return_matrix=False)
assert isinstance(m.rvs_to_transforms[x], MultivariateIntervalTransform)
assert m.logp(sum=False)[0].type.shape == shape[:-1]

Expand Down
Loading