10
10
.. testsetup ::
11
11
12
12
from itertools import *
13
+ import collections
14
+ import math
15
+ import operator
16
+ import random
13
17
14
18
--------------
15
19
@@ -132,10 +136,9 @@ loops that truncate the stream.
132
136
There are a number of uses for the *func * argument. It can be set to
133
137
:func: `min ` for a running minimum, :func: `max ` for a running maximum, or
134
138
:func: `operator.mul ` for a running product. Amortization tables can be
135
- built by accumulating interest and applying payments. First-order
136
- `recurrence relations <https://en.wikipedia.org/wiki/Recurrence_relation >`_
137
- can be modeled by supplying the initial value in the iterable and using only
138
- the accumulated total in *func * argument::
139
+ built by accumulating interest and applying payments:
140
+
141
+ .. doctest ::
139
142
140
143
>>> data = [3 , 4 , 6 , 2 , 1 , 9 , 0 , 7 , 5 , 8 ]
141
144
>>> list (accumulate(data, operator.mul)) # running product
@@ -148,17 +151,6 @@ loops that truncate the stream.
148
151
>>> list (accumulate(cashflows, lambda bal , pmt : bal* 1.05 + pmt))
149
152
[1000, 960.0, 918.0, 873.9000000000001, 827.5950000000001]
150
153
151
- # Chaotic recurrence relation https://en.wikipedia.org/wiki/Logistic_map
152
- >>> logistic_map = lambda x, _: r * x * (1 - x)
153
- >>> r = 3.8
154
- >>> x0 = 0.4
155
- >>> inputs = repeat(x0, 36) # only the initial value is used
156
- >>> [format(x, '.2f') for x in accumulate(inputs, logistic_map)]
157
- ['0.40', '0.91', '0.30', '0.81', '0.60', '0.92', '0.29', '0.79', '0.63',
158
- '0.88', '0.39', '0.90', '0.33', '0.84', '0.52', '0.95', '0.18', '0.57',
159
- '0.93', '0.25', '0.71', '0.79', '0.63', '0.88', '0.39', '0.91', '0.32',
160
- '0.83', '0.54', '0.95', '0.20', '0.60', '0.91', '0.30', '0.80', '0.60']
161
-
162
154
See :func: `functools.reduce ` for a similar function that returns only the
163
155
final accumulated value.
164
156
@@ -202,10 +194,10 @@ loops that truncate the stream.
202
194
203
195
The combination tuples are emitted in lexicographic ordering according to
204
196
the order of the input *iterable *. So, if the input *iterable * is sorted,
205
- the combination tuples will be produced in sorted order.
197
+ the output tuples will be produced in sorted order.
206
198
207
199
Elements are treated as unique based on their position, not on their
208
- value. So if the input elements are unique, there will be no repeat
200
+ value. So if the input elements are unique, there will be no repeated
209
201
values in each combination.
210
202
211
203
Roughly equivalent to::
@@ -251,7 +243,7 @@ loops that truncate the stream.
251
243
252
244
The combination tuples are emitted in lexicographic ordering according to
253
245
the order of the input *iterable *. So, if the input *iterable * is sorted,
254
- the combination tuples will be produced in sorted order.
246
+ the output tuples will be produced in sorted order.
255
247
256
248
Elements are treated as unique based on their position, not on their
257
249
value. So if the input elements are unique, the generated combinations
@@ -410,21 +402,25 @@ loops that truncate the stream.
410
402
class groupby:
411
403
# [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
412
404
# [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
405
+
413
406
def __init__(self, iterable, key=None):
414
407
if key is None:
415
408
key = lambda x: x
416
409
self.keyfunc = key
417
410
self.it = iter(iterable)
418
411
self.tgtkey = self.currkey = self.currvalue = object()
412
+
419
413
def __iter__(self):
420
414
return self
415
+
421
416
def __next__(self):
422
417
self.id = object()
423
418
while self.currkey == self.tgtkey:
424
419
self.currvalue = next(self.it) # Exit on StopIteration
425
420
self.currkey = self.keyfunc(self.currvalue)
426
421
self.tgtkey = self.currkey
427
422
return (self.currkey, self._grouper(self.tgtkey, self.id))
423
+
428
424
def _grouper(self, tgtkey, id):
429
425
while self.id is id and self.currkey == tgtkey:
430
426
yield self.currvalue
@@ -443,10 +439,17 @@ loops that truncate the stream.
443
439
Afterward, elements are returned consecutively unless *step * is set higher than
444
440
one which results in items being skipped. If *stop * is ``None ``, then iteration
445
441
continues until the iterator is exhausted, if at all; otherwise, it stops at the
446
- specified position. Unlike regular slicing, :func: `islice ` does not support
447
- negative values for *start *, *stop *, or *step *. Can be used to extract related
448
- fields from data where the internal structure has been flattened (for example, a
449
- multi-line report may list a name field on every third line). Roughly equivalent to::
442
+ specified position.
443
+
444
+ If *start * is ``None ``, then iteration starts at zero. If *step * is ``None ``,
445
+ then the step defaults to one.
446
+
447
+ Unlike regular slicing, :func: `islice ` does not support negative values for
448
+ *start *, *stop *, or *step *. Can be used to extract related fields from
449
+ data where the internal structure has been flattened (for example, a
450
+ multi-line report may list a name field on every third line).
451
+
452
+ Roughly equivalent to::
450
453
451
454
def islice(iterable, *args):
452
455
# islice('ABCDEFG', 2) --> A B
@@ -473,8 +476,6 @@ loops that truncate the stream.
473
476
for i, element in zip(range(i + 1, stop), iterable):
474
477
pass
475
478
476
- If *start * is ``None ``, then iteration starts at zero. If *step * is ``None ``,
477
- then the step defaults to one.
478
479
479
480
.. function :: pairwise(iterable)
480
481
@@ -503,13 +504,13 @@ loops that truncate the stream.
503
504
of the *iterable * and all possible full-length permutations
504
505
are generated.
505
506
506
- The permutation tuples are emitted in lexicographic ordering according to
507
+ The permutation tuples are emitted in lexicographic order according to
507
508
the order of the input *iterable *. So, if the input *iterable * is sorted,
508
- the combination tuples will be produced in sorted order.
509
+ the output tuples will be produced in sorted order.
509
510
510
511
Elements are treated as unique based on their position, not on their
511
- value. So if the input elements are unique, there will be no repeat
512
- values in each permutation.
512
+ value. So if the input elements are unique, there will be no repeated
513
+ values within a permutation.
513
514
514
515
Roughly equivalent to::
515
516
@@ -589,9 +590,7 @@ loops that truncate the stream.
589
590
.. function :: repeat(object[, times])
590
591
591
592
Make an iterator that returns *object * over and over again. Runs indefinitely
592
- unless the *times * argument is specified. Used as argument to :func: `map ` for
593
- invariant parameters to the called function. Also used with :func: `zip ` to
594
- create an invariant part of a tuple record.
593
+ unless the *times * argument is specified.
595
594
596
595
Roughly equivalent to::
597
596
@@ -605,7 +604,9 @@ loops that truncate the stream.
605
604
yield object
606
605
607
606
A common use for *repeat * is to supply a stream of constant values to *map *
608
- or *zip *::
607
+ or *zip *:
608
+
609
+ .. doctest ::
609
610
610
611
>>> list (map (pow , range (10 ), repeat(2 )))
611
612
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
@@ -614,9 +615,12 @@ loops that truncate the stream.
614
615
615
616
Make an iterator that computes the function using arguments obtained from
616
617
the iterable. Used instead of :func: `map ` when argument parameters are already
617
- grouped in tuples from a single iterable (the data has been "pre-zipped"). The
618
- difference between :func: `map ` and :func: `starmap ` parallels the distinction
619
- between ``function(a,b) `` and ``function(*c) ``. Roughly equivalent to::
618
+ grouped in tuples from a single iterable (when the data has been
619
+ "pre-zipped").
620
+
621
+ The difference between :func: `map ` and :func: `starmap ` parallels the
622
+ distinction between ``function(a,b) `` and ``function(*c) ``. Roughly
623
+ equivalent to::
620
624
621
625
def starmap(function, iterable):
622
626
# starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
@@ -644,9 +648,7 @@ loops that truncate the stream.
644
648
645
649
The following Python code helps explain what *tee * does (although the actual
646
650
implementation is more complex and uses only a single underlying
647
- :abbr: `FIFO ( first-in, first-out ) ` queue).
648
-
649
- Roughly equivalent to::
651
+ :abbr: `FIFO ( first-in, first-out ) ` queue)::
650
652
651
653
def tee(iterable, n=2):
652
654
it = iter(iterable)
@@ -663,7 +665,7 @@ loops that truncate the stream.
663
665
yield mydeque.popleft()
664
666
return tuple(gen(d) for d in deques)
665
667
666
- Once :func: `tee ` has made a split , the original *iterable * should not be
668
+ Once a :func: `tee ` has been created , the original *iterable * should not be
667
669
used anywhere else; otherwise, the *iterable * could get advanced without
668
670
the tee objects being informed.
669
671
@@ -717,14 +719,28 @@ Itertools Recipes
717
719
This section shows recipes for creating an extended toolset using the existing
718
720
itertools as building blocks.
719
721
722
+ The primary purpose of the itertools recipes is educational. The recipes show
723
+ various ways of thinking about individual tools — for example, that
724
+ ``chain.from_iterable `` is related to the concept of flattening. The recipes
725
+ also give ideas about ways that the tools can be combined — for example, how
726
+ `compress() ` and `range() ` can work together. The recipes also show patterns
727
+ for using itertools with the :mod: `operator ` and :mod: `collections ` modules as
728
+ well as with the built-in itertools such as ``map() ``, ``filter() ``,
729
+ ``reversed() ``, and ``enumerate() ``.
730
+
731
+ A secondary purpose of the recipes is to serve as an incubator. The
732
+ ``accumulate() ``, ``compress() ``, and ``pairwise() `` itertools started out as
733
+ recipes. Currently, the ``iter_index() `` recipe is being tested to see
734
+ whether it proves its worth.
735
+
720
736
Substantially all of these recipes and many, many others can be installed from
721
737
the `more-itertools project <https://pypi.org/project/more-itertools/ >`_ found
722
738
on the Python Package Index::
723
739
724
740
python -m pip install more-itertools
725
741
726
- The extended tools offer the same high performance as the underlying toolset.
727
- The superior memory performance is kept by processing elements one at a time
742
+ Many of the recipes offer the same high performance as the underlying toolset.
743
+ Superior memory performance is kept by processing elements one at a time
728
744
rather than bringing the whole iterable into memory all at once. Code volume is
729
745
kept small by linking the tools together in a functional style which helps
730
746
eliminate temporary variables. High speed is retained by preferring
@@ -809,15 +825,25 @@ which incur interpreter overhead.
809
825
for k in range(len(roots) + 1)
810
826
]
811
827
812
- def iter_index(seq , value, start=0):
813
- "Return indices where a value occurs in a sequence."
828
+ def iter_index(iterable , value, start=0):
829
+ "Return indices where a value occurs in a sequence or iterable ."
814
830
# iter_index('AABCADEAF', 'A') --> 0 1 4 7
815
- i = start - 1
816
831
try:
817
- while True:
818
- yield (i := seq.index(value, i+1))
819
- except ValueError:
820
- pass
832
+ seq_index = iterable.index
833
+ except AttributeError:
834
+ # Slow path for general iterables
835
+ it = islice(iterable, start, None)
836
+ for i, element in enumerate(it, start):
837
+ if element is value or element == value:
838
+ yield i
839
+ else:
840
+ # Fast path for sequences
841
+ i = start - 1
842
+ try:
843
+ while True:
844
+ yield (i := seq_index(value, i+1))
845
+ except ValueError:
846
+ pass
821
847
822
848
def sieve(n):
823
849
"Primes less than n"
@@ -946,16 +972,19 @@ which incur interpreter overhead.
946
972
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
947
973
# unique_everseen('ABBCcAD', str.lower) --> A B C D
948
974
seen = set()
949
- seen_add = seen.add
950
975
if key is None:
951
976
for element in filterfalse(seen.__contains__, iterable):
952
- seen_add (element)
977
+ seen.add (element)
953
978
yield element
979
+ # Note: The steps shown above are intended to demonstrate
980
+ # filterfalse(). For order preserving deduplication,
981
+ # a better solution is:
982
+ # yield from dict.fromkeys(iterable)
954
983
else:
955
984
for element in iterable:
956
985
k = key(element)
957
986
if k not in seen:
958
- seen_add (k)
987
+ seen.add (k)
959
988
yield element
960
989
961
990
def unique_justseen(iterable, key=None):
@@ -1164,6 +1193,18 @@ which incur interpreter overhead.
1164
1193
[]
1165
1194
>>> list (iter_index(' ' , ' X' ))
1166
1195
[]
1196
+ >>> list (iter_index(' AABCADEAF' , ' A' , 1 ))
1197
+ [1, 4, 7]
1198
+ >>> list (iter_index(iter (' AABCADEAF' ), ' A' , 1 ))
1199
+ [1, 4, 7]
1200
+ >>> list (iter_index(' AABCADEAF' , ' A' , 2 ))
1201
+ [4, 7]
1202
+ >>> list (iter_index(iter (' AABCADEAF' ), ' A' , 2 ))
1203
+ [4, 7]
1204
+ >>> list (iter_index(' AABCADEAF' , ' A' , 10 ))
1205
+ []
1206
+ >>> list (iter_index(iter (' AABCADEAF' ), ' A' , 10 ))
1207
+ []
1167
1208
1168
1209
>>> list (sieve(30 ))
1169
1210
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
0 commit comments