Skip to content

Commit f1a240a

Browse files
General improvements to the itertools docs (GH-98408)
(cherry picked from commit f4ead48) Co-authored-by: Raymond Hettinger <rhettinger@users.noreply.github.com>
1 parent 11e1ed0 commit f1a240a

File tree

1 file changed

+92
-51
lines changed

1 file changed

+92
-51
lines changed

Doc/library/itertools.rst

+92-51
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,10 @@
1010
.. testsetup::
1111

1212
from itertools import *
13+
import collections
14+
import math
15+
import operator
16+
import random
1317

1418
--------------
1519

@@ -132,10 +136,9 @@ loops that truncate the stream.
132136
There are a number of uses for the *func* argument. It can be set to
133137
:func:`min` for a running minimum, :func:`max` for a running maximum, or
134138
:func:`operator.mul` for a running product. Amortization tables can be
135-
built by accumulating interest and applying payments. First-order
136-
`recurrence relations <https://en.wikipedia.org/wiki/Recurrence_relation>`_
137-
can be modeled by supplying the initial value in the iterable and using only
138-
the accumulated total in *func* argument::
139+
built by accumulating interest and applying payments:
140+
141+
.. doctest::
139142

140143
>>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
141144
>>> list(accumulate(data, operator.mul)) # running product
@@ -148,17 +151,6 @@ loops that truncate the stream.
148151
>>> list(accumulate(cashflows, lambda bal, pmt: bal*1.05 + pmt))
149152
[1000, 960.0, 918.0, 873.9000000000001, 827.5950000000001]
150153

151-
# Chaotic recurrence relation https://en.wikipedia.org/wiki/Logistic_map
152-
>>> logistic_map = lambda x, _: r * x * (1 - x)
153-
>>> r = 3.8
154-
>>> x0 = 0.4
155-
>>> inputs = repeat(x0, 36) # only the initial value is used
156-
>>> [format(x, '.2f') for x in accumulate(inputs, logistic_map)]
157-
['0.40', '0.91', '0.30', '0.81', '0.60', '0.92', '0.29', '0.79', '0.63',
158-
'0.88', '0.39', '0.90', '0.33', '0.84', '0.52', '0.95', '0.18', '0.57',
159-
'0.93', '0.25', '0.71', '0.79', '0.63', '0.88', '0.39', '0.91', '0.32',
160-
'0.83', '0.54', '0.95', '0.20', '0.60', '0.91', '0.30', '0.80', '0.60']
161-
162154
See :func:`functools.reduce` for a similar function that returns only the
163155
final accumulated value.
164156

@@ -202,10 +194,10 @@ loops that truncate the stream.
202194

203195
The combination tuples are emitted in lexicographic ordering according to
204196
the order of the input *iterable*. So, if the input *iterable* is sorted,
205-
the combination tuples will be produced in sorted order.
197+
the output tuples will be produced in sorted order.
206198

207199
Elements are treated as unique based on their position, not on their
208-
value. So if the input elements are unique, there will be no repeat
200+
value. So if the input elements are unique, there will be no repeated
209201
values in each combination.
210202

211203
Roughly equivalent to::
@@ -251,7 +243,7 @@ loops that truncate the stream.
251243

252244
The combination tuples are emitted in lexicographic ordering according to
253245
the order of the input *iterable*. So, if the input *iterable* is sorted,
254-
the combination tuples will be produced in sorted order.
246+
the output tuples will be produced in sorted order.
255247

256248
Elements are treated as unique based on their position, not on their
257249
value. So if the input elements are unique, the generated combinations
@@ -410,21 +402,25 @@ loops that truncate the stream.
410402
class groupby:
411403
# [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
412404
# [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
405+
413406
def __init__(self, iterable, key=None):
414407
if key is None:
415408
key = lambda x: x
416409
self.keyfunc = key
417410
self.it = iter(iterable)
418411
self.tgtkey = self.currkey = self.currvalue = object()
412+
419413
def __iter__(self):
420414
return self
415+
421416
def __next__(self):
422417
self.id = object()
423418
while self.currkey == self.tgtkey:
424419
self.currvalue = next(self.it) # Exit on StopIteration
425420
self.currkey = self.keyfunc(self.currvalue)
426421
self.tgtkey = self.currkey
427422
return (self.currkey, self._grouper(self.tgtkey, self.id))
423+
428424
def _grouper(self, tgtkey, id):
429425
while self.id is id and self.currkey == tgtkey:
430426
yield self.currvalue
@@ -443,10 +439,17 @@ loops that truncate the stream.
443439
Afterward, elements are returned consecutively unless *step* is set higher than
444440
one which results in items being skipped. If *stop* is ``None``, then iteration
445441
continues until the iterator is exhausted, if at all; otherwise, it stops at the
446-
specified position. Unlike regular slicing, :func:`islice` does not support
447-
negative values for *start*, *stop*, or *step*. Can be used to extract related
448-
fields from data where the internal structure has been flattened (for example, a
449-
multi-line report may list a name field on every third line). Roughly equivalent to::
442+
specified position.
443+
444+
If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
445+
then the step defaults to one.
446+
447+
Unlike regular slicing, :func:`islice` does not support negative values for
448+
*start*, *stop*, or *step*. Can be used to extract related fields from
449+
data where the internal structure has been flattened (for example, a
450+
multi-line report may list a name field on every third line).
451+
452+
Roughly equivalent to::
450453

451454
def islice(iterable, *args):
452455
# islice('ABCDEFG', 2) --> A B
@@ -473,8 +476,6 @@ loops that truncate the stream.
473476
for i, element in zip(range(i + 1, stop), iterable):
474477
pass
475478

476-
If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
477-
then the step defaults to one.
478479

479480
.. function:: pairwise(iterable)
480481

@@ -503,13 +504,13 @@ loops that truncate the stream.
503504
of the *iterable* and all possible full-length permutations
504505
are generated.
505506

506-
The permutation tuples are emitted in lexicographic ordering according to
507+
The permutation tuples are emitted in lexicographic order according to
507508
the order of the input *iterable*. So, if the input *iterable* is sorted,
508-
the combination tuples will be produced in sorted order.
509+
the output tuples will be produced in sorted order.
509510

510511
Elements are treated as unique based on their position, not on their
511-
value. So if the input elements are unique, there will be no repeat
512-
values in each permutation.
512+
value. So if the input elements are unique, there will be no repeated
513+
values within a permutation.
513514

514515
Roughly equivalent to::
515516

@@ -589,9 +590,7 @@ loops that truncate the stream.
589590
.. function:: repeat(object[, times])
590591

591592
Make an iterator that returns *object* over and over again. Runs indefinitely
592-
unless the *times* argument is specified. Used as argument to :func:`map` for
593-
invariant parameters to the called function. Also used with :func:`zip` to
594-
create an invariant part of a tuple record.
593+
unless the *times* argument is specified.
595594

596595
Roughly equivalent to::
597596

@@ -605,7 +604,9 @@ loops that truncate the stream.
605604
yield object
606605

607606
A common use for *repeat* is to supply a stream of constant values to *map*
608-
or *zip*::
607+
or *zip*:
608+
609+
.. doctest::
609610

610611
>>> list(map(pow, range(10), repeat(2)))
611612
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
@@ -614,9 +615,12 @@ loops that truncate the stream.
614615

615616
Make an iterator that computes the function using arguments obtained from
616617
the iterable. Used instead of :func:`map` when argument parameters are already
617-
grouped in tuples from a single iterable (the data has been "pre-zipped"). The
618-
difference between :func:`map` and :func:`starmap` parallels the distinction
619-
between ``function(a,b)`` and ``function(*c)``. Roughly equivalent to::
618+
grouped in tuples from a single iterable (when the data has been
619+
"pre-zipped").
620+
621+
The difference between :func:`map` and :func:`starmap` parallels the
622+
distinction between ``function(a,b)`` and ``function(*c)``. Roughly
623+
equivalent to::
620624

621625
def starmap(function, iterable):
622626
# starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
@@ -644,9 +648,7 @@ loops that truncate the stream.
644648

645649
The following Python code helps explain what *tee* does (although the actual
646650
implementation is more complex and uses only a single underlying
647-
:abbr:`FIFO (first-in, first-out)` queue).
648-
649-
Roughly equivalent to::
651+
:abbr:`FIFO (first-in, first-out)` queue)::
650652

651653
def tee(iterable, n=2):
652654
it = iter(iterable)
@@ -663,7 +665,7 @@ loops that truncate the stream.
663665
yield mydeque.popleft()
664666
return tuple(gen(d) for d in deques)
665667

666-
Once :func:`tee` has made a split, the original *iterable* should not be
668+
Once a :func:`tee` has been created, the original *iterable* should not be
667669
used anywhere else; otherwise, the *iterable* could get advanced without
668670
the tee objects being informed.
669671

@@ -717,14 +719,28 @@ Itertools Recipes
717719
This section shows recipes for creating an extended toolset using the existing
718720
itertools as building blocks.
719721

722+
The primary purpose of the itertools recipes is educational. The recipes show
723+
various ways of thinking about individual tools — for example, that
724+
``chain.from_iterable`` is related to the concept of flattening. The recipes
725+
also give ideas about ways that the tools can be combined — for example, how
726+
`compress()` and `range()` can work together. The recipes also show patterns
727+
for using itertools with the :mod:`operator` and :mod:`collections` modules as
728+
well as with the built-in itertools such as ``map()``, ``filter()``,
729+
``reversed()``, and ``enumerate()``.
730+
731+
A secondary purpose of the recipes is to serve as an incubator. The
732+
``accumulate()``, ``compress()``, and ``pairwise()`` itertools started out as
733+
recipes. Currently, the ``iter_index()`` recipe is being tested to see
734+
whether it proves its worth.
735+
720736
Substantially all of these recipes and many, many others can be installed from
721737
the `more-itertools project <https://pypi.org/project/more-itertools/>`_ found
722738
on the Python Package Index::
723739

724740
python -m pip install more-itertools
725741

726-
The extended tools offer the same high performance as the underlying toolset.
727-
The superior memory performance is kept by processing elements one at a time
742+
Many of the recipes offer the same high performance as the underlying toolset.
743+
Superior memory performance is kept by processing elements one at a time
728744
rather than bringing the whole iterable into memory all at once. Code volume is
729745
kept small by linking the tools together in a functional style which helps
730746
eliminate temporary variables. High speed is retained by preferring
@@ -809,15 +825,25 @@ which incur interpreter overhead.
809825
for k in range(len(roots) + 1)
810826
]
811827

812-
def iter_index(seq, value, start=0):
813-
"Return indices where a value occurs in a sequence."
828+
def iter_index(iterable, value, start=0):
829+
"Return indices where a value occurs in a sequence or iterable."
814830
# iter_index('AABCADEAF', 'A') --> 0 1 4 7
815-
i = start - 1
816831
try:
817-
while True:
818-
yield (i := seq.index(value, i+1))
819-
except ValueError:
820-
pass
832+
seq_index = iterable.index
833+
except AttributeError:
834+
# Slow path for general iterables
835+
it = islice(iterable, start, None)
836+
for i, element in enumerate(it, start):
837+
if element is value or element == value:
838+
yield i
839+
else:
840+
# Fast path for sequences
841+
i = start - 1
842+
try:
843+
while True:
844+
yield (i := seq_index(value, i+1))
845+
except ValueError:
846+
pass
821847

822848
def sieve(n):
823849
"Primes less than n"
@@ -946,16 +972,19 @@ which incur interpreter overhead.
946972
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
947973
# unique_everseen('ABBCcAD', str.lower) --> A B C D
948974
seen = set()
949-
seen_add = seen.add
950975
if key is None:
951976
for element in filterfalse(seen.__contains__, iterable):
952-
seen_add(element)
977+
seen.add(element)
953978
yield element
979+
# Note: The steps shown above are intended to demonstrate
980+
# filterfalse(). For order preserving deduplication,
981+
# a better solution is:
982+
# yield from dict.fromkeys(iterable)
954983
else:
955984
for element in iterable:
956985
k = key(element)
957986
if k not in seen:
958-
seen_add(k)
987+
seen.add(k)
959988
yield element
960989

961990
def unique_justseen(iterable, key=None):
@@ -1164,6 +1193,18 @@ which incur interpreter overhead.
11641193
[]
11651194
>>> list(iter_index('', 'X'))
11661195
[]
1196+
>>> list(iter_index('AABCADEAF', 'A', 1))
1197+
[1, 4, 7]
1198+
>>> list(iter_index(iter('AABCADEAF'), 'A', 1))
1199+
[1, 4, 7]
1200+
>>> list(iter_index('AABCADEAF', 'A', 2))
1201+
[4, 7]
1202+
>>> list(iter_index(iter('AABCADEAF'), 'A', 2))
1203+
[4, 7]
1204+
>>> list(iter_index('AABCADEAF', 'A', 10))
1205+
[]
1206+
>>> list(iter_index(iter('AABCADEAF'), 'A', 10))
1207+
[]
11671208

11681209
>>> list(sieve(30))
11691210
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

0 commit comments

Comments
 (0)