Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a pure python sql engine benchmark. #303

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1 +1 @@
sqlglot==4.6.0
sqlglot==16.2.1
101 changes: 69 additions & 32 deletions pyperformance/data-files/benchmarks/bm_sqlglot/run_benchmark.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import pyperf

from sqlglot import parse_one, transpile
from sqlglot.executor import execute
from sqlglot.optimizer import optimize, normalize


Expand Down Expand Up @@ -48,79 +49,79 @@

TPCH_SCHEMA = {
"lineitem": {
"l_orderkey": "uint64",
"l_partkey": "uint64",
"l_suppkey": "uint64",
"l_linenumber": "uint64",
"l_quantity": "float64",
"l_extendedprice": "float64",
"l_discount": "float64",
"l_tax": "float64",
"l_orderkey": "int",
"l_partkey": "int",
"l_suppkey": "int",
"l_linenumber": "int",
"l_quantity": "double",
"l_extendedprice": "double",
"l_discount": "double",
"l_tax": "double",
"l_returnflag": "string",
"l_linestatus": "string",
"l_shipdate": "date32",
"l_commitdate": "date32",
"l_receiptdate": "date32",
"l_shipdate": "date",
"l_commitdate": "date",
"l_receiptdate": "date",
"l_shipinstruct": "string",
"l_shipmode": "string",
"l_comment": "string",
},
"orders": {
"o_orderkey": "uint64",
"o_custkey": "uint64",
"o_orderkey": "int",
"o_custkey": "int",
"o_orderstatus": "string",
"o_totalprice": "float64",
"o_orderdate": "date32",
"o_totalprice": "double",
"o_orderdate": "date",
"o_orderpriority": "string",
"o_clerk": "string",
"o_shippriority": "int32",
"o_shippriority": "int",
"o_comment": "string",
},
"customer": {
"c_custkey": "uint64",
"c_custkey": "int",
"c_name": "string",
"c_address": "string",
"c_nationkey": "uint64",
"c_nationkey": "int",
"c_phone": "string",
"c_acctbal": "float64",
"c_acctbal": "double",
"c_mktsegment": "string",
"c_comment": "string",
},
"part": {
"p_partkey": "uint64",
"p_partkey": "int",
"p_name": "string",
"p_mfgr": "string",
"p_brand": "string",
"p_type": "string",
"p_size": "int32",
"p_size": "int",
"p_container": "string",
"p_retailprice": "float64",
"p_retailprice": "double",
"p_comment": "string",
},
"supplier": {
"s_suppkey": "uint64",
"s_suppkey": "int",
"s_name": "string",
"s_address": "string",
"s_nationkey": "uint64",
"s_nationkey": "int",
"s_phone": "string",
"s_acctbal": "float64",
"s_acctbal": "double",
"s_comment": "string",
},
"partsupp": {
"ps_partkey": "uint64",
"ps_suppkey": "uint64",
"ps_availqty": "int32",
"ps_supplycost": "float64",
"ps_partkey": "int",
"ps_suppkey": "int",
"ps_availqty": "int",
"ps_supplycost": "double",
"ps_comment": "string",
},
"nation": {
"n_nationkey": "uint64",
"n_nationkey": "int",
"n_name": "string",
"n_regionkey": "uint64",
"n_regionkey": "int",
"n_comment": "string",
},
"region": {
"r_regionkey": "uint64",
"r_regionkey": "int",
"r_name": "string",
"r_comment": "string",
},
Expand Down Expand Up @@ -164,10 +165,46 @@ def bench_normalize(loops):
return elapsed


def bench_execute(loops):
tables = {
"sushi": [],
"order_items": [],
"orders": [],
}

for i in range(10000):
tables["sushi"].append({"id": i, "price": i})
tables["order_items"].append({"sushi_id": i, "order_id": i})
tables["orders"].append({"id": i, "user_id": i})

elapsed = 0
for _ in range(loops):
t0 = pyperf.perf_counter()
execute(
"""
SELECT
o.user_id,
s.price / 2 AS half_price,
AVG(s.price) AS avg_price,
SUM(s.price) AS price
FROM orders o
JOIN order_items i
ON o.id = i.order_id
JOIN sushi s
ON i.sushi_id = s.id
GROUP BY o.user_id
""",
tables=tables,
)
elapsed += pyperf.perf_counter() - t0
return elapsed


if __name__ == "__main__":
runner = pyperf.Runner()
runner.metadata['description'] = "SQLGlot benchmark"
runner.bench_time_func("sqlglot_parse", bench_parse)
runner.bench_time_func("sqlglot_transpile", bench_transpile)
runner.bench_time_func("sqlglot_optimize", bench_optimize)
runner.bench_time_func("sqlglot_normalize", bench_normalize)
runner.bench_time_func("sqlglot_execute", bench_execute)