|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 4 | +# All rights reserved. |
| 5 | +# This source code is licensed under the BSD-style license found in the |
| 6 | +# LICENSE file in the root directory of this source tree. |
| 7 | + |
| 8 | +import logging |
| 9 | + |
| 10 | +import torch |
| 11 | + |
| 12 | +logger: logging.Logger = logging.getLogger() |
| 13 | + |
| 14 | +try: |
| 15 | + # pyre-ignore[21] |
| 16 | + from fbgemm_gpu import open_source # noqa: F401 |
| 17 | +except Exception: |
| 18 | + torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") |
| 19 | + torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") |
| 20 | + |
| 21 | +TORCH_HALF_MIN: float = torch.finfo(torch.float16).min |
| 22 | +TORCH_HALF_MAX: float = torch.finfo(torch.float16).max |
| 23 | + |
| 24 | +TORCH_BFLOAT16_MIN: float = torch.finfo(torch.bfloat16).min |
| 25 | +TORCH_BFLOAT16_MAX: float = torch.finfo(torch.bfloat16).max |
| 26 | + |
| 27 | + |
| 28 | +def fp32_to_fp16_with_clamp(tensor: torch.Tensor) -> torch.Tensor: |
| 29 | + return torch.clamp(tensor, TORCH_HALF_MIN, TORCH_HALF_MAX).half() |
| 30 | + |
| 31 | + |
| 32 | +def fp32_to_bf16_with_clamp(tensor: torch.Tensor) -> torch.Tensor: |
| 33 | + return torch.clamp(tensor, TORCH_BFLOAT16_MIN, TORCH_BFLOAT16_MAX).bfloat16() |
| 34 | + |
| 35 | + |
| 36 | +def fp32_to_hfp8_with_clamp( |
| 37 | + tensor: torch.Tensor, ebits: int = 4, mbits: int = 3, bias: int = 15 |
| 38 | +) -> torch.Tensor: |
| 39 | + max_pos: float = (2 ** ((1 << ebits) - 2 - bias)) * (2 - 2 ** (-mbits)) |
| 40 | + return torch.ops.fbgemm.FloatToHFP8Quantized( |
| 41 | + tensor.contiguous(), |
| 42 | + ebits, |
| 43 | + bias, |
| 44 | + max_pos, |
| 45 | + ) |
| 46 | + |
| 47 | + |
| 48 | +def fp16_to_fp32(tensor: torch.Tensor) -> torch.Tensor: |
| 49 | + return tensor.float() |
| 50 | + |
| 51 | + |
| 52 | +def bf16_to_fp32(tensor: torch.Tensor) -> torch.Tensor: |
| 53 | + return tensor.view(torch.bfloat16).float() |
| 54 | + |
| 55 | + |
| 56 | +def hfp8_to_fp32(tensor: torch.Tensor, ebits: int = 4, bias: int = 15) -> torch.Tensor: |
| 57 | + return torch.ops.fbgemm.HFP8QuantizedToFloat( |
| 58 | + tensor.contiguous().view(torch.uint8), |
| 59 | + ebits, |
| 60 | + bias, |
| 61 | + ) |
| 62 | + |
| 63 | + |
| 64 | +def measure_fp16_quant_error(input_tensor: torch.Tensor) -> None: |
| 65 | + # TODO: log to tensorboard |
| 66 | + |
| 67 | + num_nan_fp32_tensor = torch.numel(input_tensor[torch.isnan(input_tensor)]) |
| 68 | + logger.info( |
| 69 | + "num NaN in fp32 tensor: {}, ratio: {}.".format( |
| 70 | + num_nan_fp32_tensor, num_nan_fp32_tensor / torch.numel(input_tensor) |
| 71 | + ) |
| 72 | + ) |
| 73 | + |
| 74 | + logger.info( |
| 75 | + "fp32 tensor profile: min: {}, max: {}, min abs:{}, max abs:{}.".format( |
| 76 | + torch.min(input_tensor), |
| 77 | + torch.max(input_tensor), |
| 78 | + torch.min(torch.abs(input_tensor)), |
| 79 | + torch.max(torch.abs(input_tensor)), |
| 80 | + ) |
| 81 | + ) |
| 82 | + |
| 83 | + fp16_tensor = fp32_to_fp16_with_clamp(input_tensor) |
| 84 | + num_nan_fp16_tensor = torch.numel(fp16_tensor[torch.isnan(fp16_tensor)]) |
| 85 | + |
| 86 | + logger.info( |
| 87 | + "num NaN in fp16 tensor: {}, ratio: {}.".format( |
| 88 | + num_nan_fp16_tensor, num_nan_fp16_tensor / torch.numel(input_tensor) |
| 89 | + ) |
| 90 | + ) |
| 91 | + |
| 92 | + diff = torch.abs(input_tensor - fp16_tensor.float()) |
| 93 | + rel_diff = diff / torch.abs(input_tensor) |
| 94 | + logger.info( |
| 95 | + "fp32_to_fp16 abs error: min={}, max={}, avg={}.".format( |
| 96 | + torch.min(diff), torch.max(diff), torch.mean(diff) |
| 97 | + ) |
| 98 | + ) |
| 99 | + |
| 100 | + rel_diff_not_nan = rel_diff[torch.logical_not(torch.isnan(rel_diff))] |
| 101 | + logger.info( |
| 102 | + "fp32_to_fp16 rel error: min={}, max={}, avg={}.".format( |
| 103 | + torch.min(rel_diff_not_nan), |
| 104 | + torch.max(rel_diff_not_nan), |
| 105 | + torch.mean(rel_diff_not_nan), |
| 106 | + ) |
| 107 | + ) |
| 108 | + |
| 109 | + rel_diff_1_idx = torch.where(rel_diff == 1.0) |
| 110 | + fp32_rel_err_1_vals = input_tensor[rel_diff_1_idx] |
| 111 | + if torch.numel(fp32_rel_err_1_vals) > 0: |
| 112 | + fp32_rel_err_1_vals = torch.abs(fp32_rel_err_1_vals) |
| 113 | + logger.info( |
| 114 | + "fp32_to_fp16 rel error == 1: fp32 min:{}, fp32 max:{}, fp32 avg:{}.".format( |
| 115 | + torch.min(fp32_rel_err_1_vals), |
| 116 | + torch.max(fp32_rel_err_1_vals), |
| 117 | + torch.mean(fp32_rel_err_1_vals), |
| 118 | + ) |
| 119 | + ) |
| 120 | + |
| 121 | + subrange_ratio = torch.numel(fp16_tensor[rel_diff_1_idx]) / torch.numel( |
| 122 | + fp16_tensor |
| 123 | + ) |
| 124 | + logger.info("sub fp16 range ratio: {}".format(subrange_ratio)) |
0 commit comments