Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 21 additions & 10 deletions core/conversion/conversion.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -174,23 +174,34 @@ void AddInputs(ConversionCtx* ctx, at::ArrayRef<const torch::jit::Value*> inputs
#endif
}

void MarkIValueOutputs(ConversionCtx* ctx, c10::IValue out_ivalue, const torch::jit::Value* out) {
if (out_ivalue.isCustomClass()) {
std::string name = std::string("output_") + std::to_string(ctx->num_outputs);
auto output_container = out_ivalue.toCustomClass<TensorContainer>();
nvinfer1::ITensor* out_tensor = output_container.get()->tensor();
out_tensor->setName(name.c_str());
ctx->net->markOutput(*out_tensor);
LOG_INFO(
ctx->logger, "Marking Output " << out->debugName() << " named " << name << " in engine (ctx.MarkOutput)");
ctx->num_outputs += 1;
} else {
TRTORCH_THROW_ERROR("Unsupported output type, only Tensors or unwrapped collections of Tensors can be marked as engine outputs but found type: " << out_ivalue.tagKind());
}
}

void MarkOutputs(ConversionCtx* ctx, at::ArrayRef<const torch::jit::Value*> outputs) {
for (auto out : outputs) {
auto it = ctx->value_tensor_map.find(out);
if (it == ctx->value_tensor_map.end()) {
if (ctx->evaluated_value_map.find(out) != ctx->evaluated_value_map.end()) {
auto out_ivalue = ctx->evaluated_value_map[out];
if (out_ivalue.isCustomClass()) {
std::string name = std::string("output_") + std::to_string(ctx->num_outputs);
auto output_container = out_ivalue.toCustomClass<TensorContainer>();
nvinfer1::ITensor* out_tensor = output_container.get()->tensor();
out_tensor->setName(name.c_str());
ctx->net->markOutput(*out_tensor);
LOG_INFO(
ctx->logger, "Marking Output " << out->debugName() << " named " << name << " in engine (ctx.MarkOutput)");
ctx->num_outputs += 1;
if (out_ivalue.isList()) {
c10::List<c10::IValue> value_list = out_ivalue.toList();
for(auto it = value_list.begin(); it != value_list.end(); it++) {
MarkIValueOutputs(ctx, *it, out);
}
} else {
TRTORCH_THROW_ERROR("Unknown output type. Only a single tensor or a TensorList type is supported.");
MarkIValueOutputs(ctx, out_ivalue, out);
}
}
} else {
Expand Down