Skip to content

Commit

Permalink
fixing peak memory stats for benchmark (#353)
Browse files Browse the repository at this point in the history
* fixing peak memory stats for benchmark

Summary: we were hitting the peak upon model load, not during model
runtime, this is an issue since users can load model to cpu/meta which
significantly reduces mem usage during model load/quant.

Test Plan: sh benchmarks.sh

Reviewers:

Subscribers:

Tasks:

Tags:

* improve language

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:
  • Loading branch information
HDCharles authored Jun 13, 2024
1 parent 0bde6d5 commit ead8cc8
Show file tree
Hide file tree
Showing 3 changed files with 33 additions and 22 deletions.
24 changes: 16 additions & 8 deletions torchao/_models/llama/benchmark_results.txt
Original file line number Diff line number Diff line change
@@ -1,8 +1,16 @@
20240610164534, tok/s= 94.91, mem/s=1424.58 GB/s, peak_mem=16.43 GB, model_size=15.01 GB quant: None, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240610164738, tok/s=179.41, mem/s= 757.45 GB/s, peak_mem=23.44 GB, model_size= 4.22 GB quant: int4wo-64, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int4wo-64 --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240610164952, tok/s=136.75, mem/s=1028.38 GB/s, peak_mem=19.16 GB, model_size= 7.52 GB quant: int8wo, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8wo --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240610165423, tok/s= 8.41, mem/s= 63.23 GB/s, peak_mem=19.16 GB, model_size= 7.52 GB quant: int8dq, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8dq --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240610165618, tok/s=105.02, mem/s=1387.78 GB/s, peak_mem=13.88 GB, model_size=13.21 GB quant: None, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240610165808, tok/s=199.81, mem/s= 746.45 GB/s, peak_mem=15.92 GB, model_size= 3.74 GB quant: int4wo-64, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int4wo-64 --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240610170005, tok/s=147.03, mem/s= 973.54 GB/s, peak_mem=14.50 GB, model_size= 6.62 GB quant: int8wo, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8wo --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240610170408, tok/s= 9.40, mem/s= 62.26 GB/s, peak_mem=14.50 GB, model_size= 6.62 GB quant: int8dq, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8dq --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611210704, tok/s= 29.44, mem/s= 883.80 GB/s, peak_mem=32.34 GB, model_size=30.02 GB quant: None, mod: Meta-Llama-3-8B, compile: False, compile_prefill: False, dtype: torch.float32, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.float32 --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611210907, tok/s= 26.22, mem/s= 393.56 GB/s, peak_mem=16.16 GB, model_size=15.01 GB quant: None, mod: Meta-Llama-3-8B, compile: False, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611211226, tok/s= 94.57, mem/s=1419.48 GB/s, peak_mem=16.43 GB, model_size=15.01 GB quant: None, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611215300, tok/s= 95.57, mem/s=1434.47 GB/s, peak_mem=16.43 GB, model_size=15.01 GB quant: None, mod: Meta-Llama-3-8B, compile: True, compile_prefill: True, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --compile_prefill --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611215559, tok/s=180.13, mem/s= 760.48 GB/s, peak_mem= 6.88 GB, model_size= 4.22 GB quant: int4wo-64, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int4wo-64 --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611215907, tok/s=139.34, mem/s=1047.90 GB/s, peak_mem=10.42 GB, model_size= 7.52 GB quant: int8wo, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8wo --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611220524, tok/s= 8.46, mem/s= 63.59 GB/s, peak_mem= 9.24 GB, model_size= 7.52 GB quant: int8dq, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8dq --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611221358, tok/s= 9.26, mem/s= 138.97 GB/s, peak_mem=10.60 GB, model_size=15.01 GB quant: autoquant, mod: Meta-Llama-3-8B, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization autoquant --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Meta-Llama-3-8B/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611221551, tok/s= 30.18, mem/s= 797.58 GB/s, peak_mem=27.23 GB, model_size=26.43 GB quant: None, mod: Llama-2-7b-chat-hf, compile: False, compile_prefill: False, dtype: torch.float32, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.float32 --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611221743, tok/s= 26.09, mem/s= 344.72 GB/s, peak_mem=13.62 GB, model_size=13.21 GB quant: None, mod: Llama-2-7b-chat-hf, compile: False, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611222048, tok/s=105.41, mem/s=1393.00 GB/s, peak_mem=13.90 GB, model_size=13.21 GB quant: None, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611230037, tok/s=106.78, mem/s=1411.01 GB/s, peak_mem=13.88 GB, model_size=13.21 GB quant: None, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: True, dtype: torch.bfloat16, device: cuda repro: python generate.py --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --compile_prefill --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611230250, tok/s=199.72, mem/s= 746.13 GB/s, peak_mem= 4.75 GB, model_size= 3.74 GB quant: int4wo-64, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int4wo-64 --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611230440, tok/s=149.32, mem/s= 988.73 GB/s, peak_mem= 8.95 GB, model_size= 6.62 GB quant: int8wo, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8wo --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611231027, tok/s= 9.35, mem/s= 61.94 GB/s, peak_mem= 8.61 GB, model_size= 6.62 GB quant: int8dq, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization int8dq --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
20240611231759, tok/s= 9.56, mem/s= 126.32 GB/s, peak_mem= 8.53 GB, model_size=13.22 GB quant: autoquant, mod: Llama-2-7b-chat-hf, compile: True, compile_prefill: False, dtype: torch.bfloat16, device: cuda repro: python generate.py --quantization autoquant --checkpoint_path ../../../../gpt-fast/checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth --device cuda --precision torch.bfloat16 --compile --num_samples 5 --max_new_tokens 200 --top_k 200 --temperature 0.8
1 change: 1 addition & 0 deletions torchao/_models/llama/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -285,6 +285,7 @@ def callback(x):
)
if i == -1:
print(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")
torch.cuda.reset_peak_memory_stats()
continue
if hasattr(prof, "export_chrome_trace"):
prof.export_chrome_trace(f"{profile}.json")
Expand Down
30 changes: 16 additions & 14 deletions torchao/quantization/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,20 +2,22 @@
Typically quantization algorithms will have different schemes for how the activation and weights are quantized so A16W8 for instance means the activations are quantized to 16 bits wheras the weights are quantized to 8 bits. Trying out different quantization schemes in `torchao` is generally a 1 line change. Note: exact APIs are not stable, we may change them in the future.

## Benchmarks
Benchmarks are run on a machine with a single A100 GPU using the script in _models/llama, evaluation was done
Using the lm_eval. The models used were meta-llama/Llama-2-7b-chat-hf and meta-llama/Meta-Llama-3-8B

| Model | Technique | wikitext-perplexity | Tokens/Second | Memory Bandwidth (GB/s) | Model Size (GB) |
| ----------- | ------------------ | ------------------- | ------------- | ----------------------- | --------------- |
| Llama-2-7B | Base (bfloat16) | 12.212 | 105.02 | 1387.78 | 13.21 |
| | int8dq | 12.262 | 9.40 | 62.26 | 6.62 |
| | int8wo | 12.204 | 147.03 | 973.54 | 6.62 |
| | int4wo-64 | 12.843 | 199.81 | 746.45 | 3.74 |
| | int4wo-64-GPTQ | 12.489 | 199.81 | 746.45 | 3.74 |
| Llama-3-8B | Base (bfloat16) | N/A | 94.91 | 1424.58 | 15.01 |
| | int8dq | N/A | 8.41 | 63.23 | 7.52 |
| | int8wo | N/A | 136.75 | 1028.38 | 7.52 |
| | int4wo-64 | N/A | 179.41 | 757.45 | 4.22 |
Benchmarks are run on a machine with a single A100 GPU using the script in _models/llama which generates text in a latency optimized way (batchsize=1), evaluation was done
Using the lm_eval. The models used were meta-llama/Llama-2-7b-chat-hf and meta-llama/Meta-Llama-3-8B.

| Model | Technique | wikitext-perplexity | Tokens/Second | Memory Bandwidth (GB/s) | Peak Memory (GB) | Model Size (GB) |
| ----------- | ------------------ | ------------------- | ------------- | ----------------------- | ---------------- | --------------- |
| Llama-2-7B | Base (bfloat16) | 12.212 | 105.02 | 1387.78 | 13.21 | 13.90 |
| | int8dq | 12.262 | 9.40 | 62.26 | 6.62 | 8.61 |
| | int8wo | 12.204 | 147.03 | 973.54 | 6.62 | 8.95 |
| | int4wo-64 | 12.843 | 199.81 | 746.45 | 3.74 | 4.75 |
| | int4wo-64-GPTQ | 12.489 | 199.81 | 746.45 | 3.74 | 4.75 |
| Llama-3-8B | Base (bfloat16) | N/A | 94.91 | 1424.58 | 15.01 | 16.43 |
| | int8dq | N/A | 8.41 | 63.23 | 7.52 | 9.24 |
| | int8wo | N/A | 136.75 | 1028.38 | 7.52 | 10.42 |
| | int4wo-64 | N/A | 179.41 | 757.45 | 4.22 | 6.88 |

note: Int8 dynamic quantization works best on compute bound models like [SAM](https://github.com/pytorch-labs/segment-anything-fast) whereas Llama with batchsize=1 tends to be memory bound, thus the rather low performance.

## Autoquantization

Expand Down

0 comments on commit ead8cc8

Please sign in to comment.