Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fused HQQ Quantization Gemm #153

Merged
merged 19 commits into from
Apr 25, 2024
Merged
147 changes: 147 additions & 0 deletions benchmarks/benchmark_hqq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@

try:
import triton
import hqq
if int(triton.__version__.split(".")[0]) < 3:
raise "triton >= 3.0.0 is required to run this test"
except ImportError:
raise "triton and hqq required to run this benchmark"

import torch
from io import StringIO

import pandas as pd
from hqq.core.quantize import HQQLinear, BaseQuantizeConfig
from torchao.prototype.hqq.hqq_tinygemm_linear import HQQLinearTorchWeightOnlyInt4
from torchao.prototype.hqq import triton_mixed_mm, pack_2xint4

from triton.testing import do_bench
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

could you print your pip list here? I'm having a lot of trouble finding which triton version you used

I tried the nightlies shown on the openai repo and I also tried make triton from inside pytorch repo and keep getting errors like

ImportError: cannot import name 'get_cuda_stream' from 'triton.runtime.jit' (/home/marksaroufim/.conda/envs/hqq/lib/python3.10/site-packages/triton/runtime/jit.py)

To make testing easier assume we'll be using https://github.com/pytorch/pytorch/blob/main/Makefile#L35



BASE_QUANT_CONFIG = {
"optimize": True,
"view_as_float": False,
"nbits": 4,
"bitpack": False,
"axis": 1,
}


def bench_custom_kernel(x, W_q, scales, zeros, group_size, kernel_type="max_autotune", fp8_fast_accum=False):
packed_w = pack_2xint4(W_q.T)

def fn():
_ = triton_mixed_mm(
x,
packed_w,
scales.T,
zeros.T,
group_size=group_size,
fp8_fast_accum=fp8_fast_accum,
kernel_type=kernel_type,
)

t = do_bench(fn)
return t


def bench_hqq(x, hqq_linear: HQQLinear):
def fn():
_ = hqq_linear.forward(x)

t = do_bench(fn)
return t


def run_benchmark(shape, group_size, dtype, axis=1, quant_dtype=torch.uint8):
qcfg = {
**BASE_QUANT_CONFIG,
**dict(group_size=group_size, axis=axis),
}
M, N, K = shape

x = torch.randn(M, K, dtype=dtype, device="cuda")
linear = torch.nn.Linear(K, N, bias=False, dtype=dtype, device="cuda")

quant_config = BaseQuantizeConfig(
quant_zero=False, quant_scale=False, offload_meta=False, view_as_float=False
)
quant_config.update({"weight_quant_params": qcfg})

hqq_linear = HQQLinear(linear, quant_config, compute_dtype=dtype, del_orig=False)

# Reference
ref_time = bench_hqq(x, hqq_linear)

# Custom kernel
W_q, meta = hqq_linear.W_q, hqq_linear.meta
scales, zeros = meta["scale"], meta["zero"]

W_q = (
W_q.reshape(meta["shape"])
if quant_config["weight_quant_params"]["bitpack"] == False
else W_q
)
W_q = W_q.to(dtype=quant_dtype)
scales = scales.reshape(N, -1)
zeros = zeros.reshape(N, -1)
tt_time = bench_custom_kernel(x, W_q, scales, zeros, group_size)

if dtype == torch.bfloat16:
_ = quant_config["weight_quant_params"].pop("bitpack")
hqq_int4mm = HQQLinearTorchWeightOnlyInt4(
linear, quant_config, compute_dtype=dtype, del_orig=False
)
int4_time = bench_hqq(x, hqq_int4mm)

print(f"{shape=} {group_size=} {dtype=}:")

print(
f"Ref: {ref_time:.4f}",
f"Triton: {tt_time:.4f}",
f"Torch int4mm: {int4_time:.4f}"
if dtype == torch.bfloat16
else "",
)
print()
return ref_time, tt_time, int4_time if dtype == torch.bfloat16 else None


SHAPES = [
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@cpuhrsch I guess these shapes are fine for now but are there some specific shapes we're more interested in tracking on an ongoing basis if so I wish we could just make them part of our benchmark or test utilities

[16, 4096, 4096],
[32, 4096, 4096],
[128, 4096, 4096],
[256, 4096, 4096],
[512, 4096, 4096],
[1024, 4096, 4096],
]

DTYPES = [torch.bfloat16] # , torch.float16]
GROUP_SIZES = [128]


HEADERS = [
"M",
"N",
"K",
"group_size",
"dtype",
"ref",
"triton",
"tinygemm",
]
data = []

if __name__ == "__main__":
print(torch.cuda.get_device_properties(0))

for shape in SHAPES:
for group_size in GROUP_SIZES:
for dtype in DTYPES:
timings = run_benchmark(shape, group_size, dtype)
data.append((*shape, group_size, dtype, *timings))

output = StringIO()
df = pd.DataFrame(data, columns=HEADERS)
df.to_csv(output, index=False)
print(output.getvalue())
104 changes: 104 additions & 0 deletions test/hqq/test_triton_mm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
# Skip entire test if triton is not available, otherwise CI failure
import pytest
try:
import triton
import hqq
if int(triton.__version__.split(".")[0]) < 3:
pytest.skip("triton >= 3.0.0 is required to run this test", allow_module_level=True)
except ImportError:
pytest.skip("triton and hqq required to run this test", allow_module_level=True)

import itertools
import torch

from hqq.core.quantize import HQQLinear, BaseQuantizeConfig
from torchao.prototype.hqq import triton_mixed_mm, pack_2xint4


#Test configs
SHAPES = [
[16, 128, 128],
[16, 4096, 4096],
]

DTYPES = [torch.bfloat16, torch.float16]
GROUP_SIZES = [64, 128]
AXES = [1] #Only axis = 1 supported
TRANSPOSED = [True]
TRITON_KERNEL_TYPE = ["compute_bound"] #["max_autotune", "compute_bound"]

TEST_CONFIGS = list(itertools.product(SHAPES, GROUP_SIZES, AXES, DTYPES, TRANSPOSED, TRITON_KERNEL_TYPE))

BASE_QUANT_CONFIG = {
"optimize": True,
"view_as_float": False,
"nbits": 4,
"bitpack": False,
"axis": 1,
}


def check(expected, actual, msg="", max_diff=1e-3, verbose=False):
passed = torch.allclose(expected, actual, atol=max_diff, rtol=max_diff)
if verbose:
max_err = (expected - actual).abs().max()
if not passed:
print(f"{msg}: Failed! Max error: {max_err}")
else:
print(f"{msg}: Passed! Max error: {max_err}")

return passed

def _arg_to_id(arg):
if isinstance(arg, list):
return "x".join([str(x) for x in arg])
return str(arg)

@pytest.mark.parametrize("shape, group_size, axis, dtype, transposed, kernel_type", TEST_CONFIGS, ids=_arg_to_id)
def test_mixed_mm(shape, group_size, axis, dtype, transposed, kernel_type, quant_dtype=torch.uint8):
qcfg = {
**BASE_QUANT_CONFIG,
**dict(group_size=group_size, axis=axis),
}
M, N, K = shape

linear = torch.nn.Linear(K, N, bias=False, dtype=dtype, device="cuda")

quant_config = BaseQuantizeConfig(
quant_zero=False, quant_scale=False, offload_meta=False, view_as_float=False
)
quant_config.update({"weight_quant_params": qcfg})
hqq_linear = HQQLinear(linear, quant_config, compute_dtype=dtype, del_orig=False)
W_q, meta = hqq_linear.W_q, hqq_linear.meta
W_q = W_q.to(dtype=quant_dtype)
W_q = (
W_q.reshape(meta["shape"])
if quant_config["weight_quant_params"]["bitpack"] == False
else W_q
)
W_dq = hqq_linear.dequantize()

scales, zeros = meta["scale"], meta["zero"]
scales = scales.reshape(N, -1)
zeros = zeros.reshape(N, -1)

if transposed:
x = torch.randn(M, N, dtype=dtype, device="cuda")
hqq_out = x @ W_dq

#Pack uint8 W_q, then run fused dequant matmul
packed_w = pack_2xint4(W_q)
tt_out = triton_mixed_mm(
x, packed_w, scales, zeros, transposed=True, group_size=group_size, fp8_fast_accum=False, kernel_type=kernel_type
)
else:
x = torch.randn(M, K, dtype=dtype, device="cuda")
hqq_out = x @ W_dq.T

packed_w = pack_2xint4(W_q.T)
tt_out = triton_mixed_mm(
x, packed_w, scales.T, zeros.T, transposed=False, group_size=group_size, fp8_fast_accum=False, kernel_type=kernel_type
)

assert check(hqq_out, tt_out, max_diff=1e-2 if dtype == torch.bfloat16 else 1e-3)

55 changes: 55 additions & 0 deletions torchao/prototype/hqq/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
## Fused `int4 / fp16` Quant Matmul

Fused kernel that combines asymmetric dequantization and gemm. Useful primarily for compute-bound (M > 16) scenarios and not for memory-bound / inference scenarios.

The kernel fuses two ops:

- Dequantization: upcasts `u4 / s4` weights to `float16 / bfloat16`, followed by groupwise scaling and shifting by scales / zeropoints
- GEMM: matmul on dequantized weights and activations.

Tested and benchmarked for `HQQ` but could theoretically be used for any asymmetric quantization scheme.

> **NOTE**: Benchmark below is only indicative of performance on consumer-grade `Ampere` GPUs (`A6000` specifically). When tested on `H100`, the performance is on par / marginally worse than native / compiled `torch`.
> The intended use is thus for fine-tuning / training models on non-datacenter GPUs (`80 <= compute capability < 90`). If interested in optimizing the kernel for other architectures, please drop a note in the CUDA-MODE Discord channel.

### Implementation Details

- Bitpacking is simple row interleave, no need for extensive preprocessing (e.g., `tinygemm` or `fastertransformer`)
- Tested for `float16 / bfloat16` activations, scales, and zeros
- Autotuned for both compute-bound and memory-bound configs
- Assumes operand B of the `gemm` is is the quantized type.
- Requires quantization along `in-features`, i.e., the `K` dimension, or `axis=1`, of `torch.linear.weight`.
- Implementation handles both transposed and non-tranposed quantized weights, useful for forward / backward training passes.

### Performance

Initial benchmarking (on `A6000`) demonstrates promising results, scaling well for compute-bound workloads:

| | M | N | K | group_size | dtype | hqq_ref | triton | tinygemm |
| --- | ---- | ---- | ---- | ---------- | -------------- | ------- | ------ | -------- |
| 0 | 16 | 4096 | 4096 | 128 | torch.bfloat16 | 0.2675 | 0.0633 | 0.0382 |
| 1 | 32 | 4096 | 4096 | 128 | torch.bfloat16 | 0.2669 | 0.0704 | 0.0649 |
| 2 | 128 | 4096 | 4096 | 128 | torch.bfloat16 | 0.2689 | 0.0960 | 0.2523 |
| 3 | 256 | 4096 | 4096 | 128 | torch.bfloat16 | 0.3268 | 0.1355 | 0.5192 |
| 4 | 512 | 4096 | 4096 | 128 | torch.bfloat16 | 0.3628 | 0.2369 | 1.0892 |
| 5 | 1024 | 4096 | 4096 | 128 | torch.bfloat16 | 0.5133 | 0.4753 | 2.2016 |

- Times are in `ms`, see `benchmarks/benchmark_hqq.py`.
- `hqq_ref` is the base `HQQ_Linear` [module](https://github.com/mobiusml/hqq/blob/6d50eee4bcdd99cc10716f1297c5b2803d2b6da4/hqq/core/quantize.py#L349) that is unfused (dequantization followed by call to torch.matmul).
- `tinygemm` calls `torch.ops.aten._weight_int4pack_mm`. Implementation is a custom HQQLinear layer that wraps the preprocessing necessary for this kernel, adapted from a benchmark script posted by @mobicham from `CUDA-mode` Discord discussions.

GPU details:

```
_CudaDeviceProperties(name='NVIDIA RTX A6000', major=8, minor=6, total_memory=48676MB, multi_processor_count=84)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

once we figure out the installation issues I'll check to see if results repro on an H100

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

apologies meant pip freeze

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Collaborator Author

@jeromeku jeromeku Apr 24, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@msaroufim

When you run on H100, can you run once with DISABLE_MMA_V3=1? It toggles Hopper specific specializations in triton. Curious to see how performance changes.

```

### NOTE

This implementation requires **`triton >= 3.0.0`**.

- Running tests / benchmarks requires installation of `hqq`:

```
pip install hqq
```
1 change: 1 addition & 0 deletions torchao/prototype/hqq/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from .mixed_mm import triton_mixed_mm, pack_2xint4
Loading
Loading