Skip to content

add PyTorch MG style group gemm reference utils #1979

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
129 changes: 129 additions & 0 deletions torchao/testing/group_gemm_reference_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-unsafe
import logging

import numpy as np
import torch

# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)

"""
This file contains reference implementations of MG group GEMM operations (forward and backward pass) using PyTorch operations.
These implementations can be used to verify the correctness of the custom Triton kernels and FP8 operations.
"""


def compute_reference_forward(x, w, m_sizes):
"""
Compute reference forward pass using PyTorch operations.

Args:
x (torch.Tensor): Input tensor of shape (MG, K)
w (torch.Tensor): Weight tensor of shape (N, K)
m_sizes (torch.Tensor): Group sizes tensor of shape (G)

Returns:
torch.Tensor: Reference output tensor of shape (M, N)
"""
result = torch.zeros((x.shape[0], w.shape[0]), dtype=x.dtype, device=x.device)

m_start = 0
for g in range(len(m_sizes)):
m_size = m_sizes[g].item()
if m_size > 0:
m_end = m_start + m_size

# Extract group input
x_g = x[m_start:m_end]

# Compute group output: y_g = x_g @ w.T
y_g = torch.matmul(x_g, w.T)

# Store result
result[m_start:m_end] = y_g

# Update start index
m_start = m_end

return result


def compute_reference_backward(x, w, m_sizes, grad_output):
"""
Compute reference backward pass using PyTorch autograd.

Args:
x (torch.Tensor): Input tensor of shape (MG, K)
w (torch.Tensor): Weight tensor of shape (N, K)
m_sizes (torch.Tensor): Group sizes tensor of shape (G)
grad_output (torch.Tensor): Gradient tensor of shape (M, N)

Returns:
tuple: (grad_x, grad_w) gradient tensors
"""
# Create autograd-enabled copies
x_autograd = x.detach().clone().requires_grad_(True)
w_autograd = w.detach().clone().requires_grad_(True)

# Compute forward pass
output = compute_reference_forward(x_autograd, w_autograd, m_sizes)

# Backpropagate
output.backward(grad_output)

return x_autograd.grad, w_autograd.grad


def analyze_tensor_differences(actual, expected, name, rtol=0.5, atol=0.5):
"""
Analyze differences between actual and expected tensors.

Args:
actual (torch.Tensor): Actual tensor
expected (torch.Tensor): Expected tensor
name (str): Name of the tensor for logging

Returns:
bool: True if tensors are close enough
"""

# Analyze differences
diff = (actual - expected).abs()
max_idx = diff.argmax().item()
idx = np.unravel_index(max_idx, actual.shape)
max_diff = diff.max().item()

logging.info(f"Largest {name} difference: {max_diff} at {idx}")
logging.info(f"Values: {actual[idx].item()} vs {expected[idx].item()}")

is_close = torch.allclose(actual, expected, rtol=rtol, atol=atol)

if is_close:
logging.info(f"✓ SUCCESS: {name} matches PyTorch reference")
else:
logging.error(f"✗ FAILURE: {name} mismatch detected")

# Count zeros
zeros_actual = (actual == 0).sum().item()
zeros_expected = (expected == 0).sum().item()
logging.info(
f"Zeros in {name} (actual): {zeros_actual}/{actual.numel()} ({zeros_actual/actual.numel()*100:.2f}%)"
)
logging.info(
f"Zeros in {name} (expected): {zeros_expected}/{expected.numel()} ({zeros_expected/expected.numel()*100:.2f}%)"
)

# Check for NaNs
nan_actual = torch.isnan(actual).sum().item()
if nan_actual > 0:
logging.error(f"NaN values detected in {name}: {nan_actual}")

return is_close
Loading