Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix the impl for to for int4 weight only use case #522

Merged
merged 1 commit into from
Jul 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 18 additions & 1 deletion test/quantization/test_quant_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -624,7 +624,7 @@ def test_quantized_tensor_subclass_save_load(self):

@unittest.skipIf(not TORCH_VERSION_AFTER_2_4, "Test only enabled for 2.4+")
@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
def test_quantized_model_to_device(self):
def test_int8wo_quantized_model_to_device(self):
m = ToyLinearModel().eval().to(torch.bfloat16)
m_copy = copy.deepcopy(m)
example_inputs = m.example_inputs(dtype=torch.bfloat16, device="cpu")
Expand All @@ -637,6 +637,23 @@ def test_quantized_model_to_device(self):
cuda_res = m(*example_inputs_cuda)
self.assertEqual(cuda_res.cpu(), ref)

@unittest.skipIf(not TORCH_VERSION_AFTER_2_4, "Test only enabled for 2.4+")
@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
@unittest.skipIf(TORCH_VERSION_AFTER_2_5, "Test currently doesn't work for 2.5+")
def test_int4wo_quantized_model_to_device(self):
# TODO: change initial model to "cpu"
m = ToyLinearModel().eval().to(torch.bfloat16).to("cuda")
m_copy = copy.deepcopy(m)
example_inputs = m.example_inputs(dtype=torch.bfloat16, device="cuda")

quantize_(m, int4_weight_only())
ref = m(*example_inputs)

example_inputs_cuda = (example_inputs[0].to("cuda"),)
m.to(device="cuda")
cuda_res = m(*example_inputs_cuda)
self.assertEqual(cuda_res.cpu(), ref)

@unittest.skipIf(not TORCH_VERSION_AFTER_2_4, "Test only enabled for 2.4+")
@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
def test_quantized_tensor_subclass_save_load_map_location(self):
Expand Down
2 changes: 1 addition & 1 deletion torchao/dtypes/affine_quantized_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -544,7 +544,7 @@ def from_plain(
def to(self, *args, **kwargs):
kwargs = self._get_to_kwargs(*args, **kwargs)
device = kwargs["device"]
if device != "cuda" or (isinstance(device, torch.device) and device.type != "cuda"):
if device != "cuda" and (isinstance(device, torch.device) and device.type != "cuda"):
raise ValueError(f"TensorCoreTiledAQTLayout is only available for cuda device, can't convert to {device}")
return self.__class__(
self.packed_weight.to(device),
Expand Down
Loading