-
Notifications
You must be signed in to change notification settings - Fork 169
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
move float8_experimental to torchao/float8 #551
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,307 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD 3-Clause license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
import argparse | ||
import copy | ||
from dataclasses import dataclass | ||
from itertools import product | ||
from pathlib import Path | ||
from typing import Callable, List, Optional, Tuple | ||
|
||
import pandas as pd | ||
|
||
import torch | ||
import torch.utils.benchmark as benchmark | ||
from torchao.float8.config import CastConfig, Float8LinearConfig, ScalingType | ||
from torchao.float8.float8_linear import Float8Linear | ||
from torchao.float8.float8_linear_utils import ( | ||
linear_requires_sync, | ||
sync_float8_amax_and_scale_history, | ||
) | ||
from torchao.float8.float8_tensor import ScaledMMConfig | ||
from tqdm import tqdm | ||
|
||
# estimating TOPs for matmuls in fp32, fp16, fp8 | ||
# assuming A * B = C, with A being M * K, B being K * N, C being M * N | ||
|
||
# H100 SXM specs: bottom of https://www.nvidia.com/en-us/data-center/h100/ | ||
h100_peak_flops_float32 = 67e12 | ||
h100_peak_flops_fp16_tc = 1979e12 | ||
h100_peak_tops_float8_tc = 3958e12 | ||
|
||
dtype_to_peak_tops = { | ||
torch.float32: h100_peak_flops_float32, | ||
torch.float16: h100_peak_flops_fp16_tc, | ||
torch.bfloat16: h100_peak_flops_fp16_tc, | ||
torch.float8_e4m3fn: h100_peak_tops_float8_tc, | ||
torch.float8_e5m2: h100_peak_tops_float8_tc, | ||
} | ||
|
||
# prevent splitting columns when printing a data frame | ||
pd.set_option("display.expand_frame_repr", False) | ||
# print the entire data frame | ||
pd_print_full_ctx = pd.option_context( | ||
"display.max_rows", None, "display.max_columns", None | ||
) | ||
|
||
|
||
def benchmark_torch_function_in_microseconds( | ||
func: Callable, | ||
*args, | ||
**kwargs, | ||
) -> float: | ||
t0 = benchmark.Timer( | ||
stmt="func(*args, **kwargs)", | ||
globals={"args": args, "kwargs": kwargs, "func": func}, | ||
) | ||
return t0.blocked_autorange().median * 1e6 | ||
|
||
|
||
@dataclass | ||
class Experiment: | ||
name: str | ||
shape: Tuple[int, int, int] | ||
ref_time_sec: float | ||
float8_time_sec: float | ||
dtype: torch.dtype | ||
compiled: bool | ||
use_fast_accum: bool | ||
scaling_repr: str | ||
|
||
# 3 Times since we are calculating forward backward | ||
@property | ||
def ref_tops_sec(self): | ||
M, K, N = self.shape | ||
return float(3 * (2 * M * K * N)) / self.ref_time_sec | ||
|
||
@property | ||
def ref_pct_top_peak(self): | ||
return self.ref_tops_sec / dtype_to_peak_tops[self.dtype] | ||
|
||
@property | ||
def float8_tops_sec(self): | ||
M, K, N = self.shape | ||
return float(3 * (2 * M * K * N)) / self.float8_time_sec | ||
|
||
@property | ||
def float8_pct_top_peak(self): | ||
return self.float8_tops_sec / dtype_to_peak_tops[torch.float8_e4m3fn] | ||
|
||
|
||
def main( | ||
sweep_path: Optional[Path] = None, | ||
compile: bool = True, | ||
n_limit: Optional[int] = None, | ||
fast_accum_filter: Optional[bool] = None, | ||
shape_name_filter: Optional[str] = None, | ||
scaling_type_input: str = "dynamic", | ||
scaling_type_weight: str = "dynamic", | ||
scaling_type_grad_output: str = "dynamic", | ||
): | ||
device = "cuda" | ||
print(f"Compile is set to | {compile}") | ||
|
||
scaling_type_input = ScalingType(scaling_type_input) | ||
scaling_type_weight = ScalingType(scaling_type_weight) | ||
scaling_type_grad_output = ScalingType(scaling_type_grad_output) | ||
config = Float8LinearConfig( | ||
cast_config_input=CastConfig(scaling_type=scaling_type_input), | ||
cast_config_weight=CastConfig(scaling_type=scaling_type_weight), | ||
cast_config_grad_output=CastConfig(scaling_type=scaling_type_grad_output), | ||
) | ||
|
||
# LLaMa 2 70B single-node weight shapes | ||
# assumes fused attn.wqkv and ffn.w13 | ||
name_to_shapes_70b = { | ||
"attn.wqkv": (8192, 1280), | ||
"attn.w0": (1024, 8192), | ||
"ffn.w13": (8192, 7168), | ||
"ffn.w2": (3584, 8192), | ||
} | ||
input_bias = False | ||
if fast_accum_filter is not None: | ||
use_fast_accum = [fast_accum_filter] | ||
else: | ||
use_fast_accum = [True, False] | ||
if shape_name_filter is not None: | ||
k = shape_name_filter | ||
name_to_shapes_70b = {k: name_to_shapes_70b[k]} | ||
experiment_list: List[Experiment] = [] | ||
dtype = torch.bfloat16 | ||
for idx, (fast_accum, (name, (K, N))) in enumerate( | ||
tqdm(list(product(use_fast_accum, name_to_shapes_70b.items()))) | ||
): | ||
if n_limit is not None and idx >= n_limit: | ||
break | ||
linear_ref = torch.nn.Linear(K, N, bias=input_bias).to( | ||
device=device, dtype=dtype | ||
) | ||
|
||
linear_float8 = Float8Linear.from_float( | ||
copy.deepcopy(linear_ref), | ||
config=config, | ||
) | ||
scaling_repr = linear_float8.scaling_repr() | ||
|
||
if fast_accum: | ||
linear_float8.forward_config = ScaledMMConfig(False, True, False) | ||
else: | ||
linear_float8.forward_config = ScaledMMConfig(False, False, False) | ||
|
||
bsz, seq_len = 4, 4096 | ||
M = bsz * seq_len | ||
input_tensor = torch.randn(M, K, device=device, dtype=dtype, requires_grad=True) | ||
ref_forw_backward = lambda: linear_ref(input_tensor).sum().backward() | ||
|
||
def float8_forw_backward(): | ||
if linear_requires_sync(config): | ||
sync_float8_amax_and_scale_history(linear_float8) | ||
linear_float8(input_tensor).sum().backward() | ||
|
||
def n_times(n, fn, *args, **kwargs): | ||
def wrapper(*args, **kwargs): | ||
for _ in range(n): | ||
fn(*args, **kwargs) | ||
|
||
return wrapper | ||
|
||
REPEAT_N = 100 | ||
|
||
ref_forw_backward = n_times(REPEAT_N, ref_forw_backward) | ||
float8_forw_backward = n_times(REPEAT_N, float8_forw_backward) | ||
|
||
if compile: | ||
ref_forw_backward = torch.compile(ref_forw_backward) | ||
float8_forw_backward = torch.compile(float8_forw_backward) | ||
|
||
for _ in range(5): | ||
ref_forw_backward() | ||
float8_forw_backward() | ||
|
||
ref_time = ( | ||
benchmark_torch_function_in_microseconds(ref_forw_backward) | ||
* 1e-6 | ||
/ REPEAT_N | ||
) | ||
float8_time = ( | ||
benchmark_torch_function_in_microseconds(float8_forw_backward) | ||
* 1e-6 | ||
/ REPEAT_N | ||
) | ||
experiment = Experiment( | ||
name, | ||
(M, K, N), | ||
ref_time, | ||
float8_time, | ||
dtype, | ||
compile, | ||
use_fast_accum=fast_accum, | ||
scaling_repr=scaling_repr, | ||
) | ||
print(experiment) | ||
print("float8 speedup", experiment.ref_time_sec / experiment.float8_time_sec) | ||
experiment_list.append(experiment) | ||
torch._dynamo.reset() | ||
|
||
headers = [ | ||
"name", | ||
"M", | ||
"K", | ||
"N", | ||
"scaling_repr", | ||
"ref_dtype", | ||
"compiled", | ||
"use_fast_accum", | ||
"ref_time_sec", | ||
"pt_fp8_time_sec", | ||
"ref_tops_sec", | ||
"ref_pct_top_peak", | ||
"pt_fp8_tops_sec", | ||
"pt_fp8_pct_top_peak", | ||
] | ||
data = [] | ||
for experiment in experiment_list: | ||
data.append( | ||
[ | ||
experiment.name, | ||
experiment.shape[0], | ||
experiment.shape[1], | ||
experiment.shape[2], | ||
experiment.scaling_repr, | ||
experiment.dtype, | ||
experiment.compiled, | ||
experiment.use_fast_accum, | ||
experiment.ref_time_sec, | ||
experiment.float8_time_sec, | ||
experiment.ref_tops_sec, | ||
experiment.ref_pct_top_peak, | ||
experiment.float8_tops_sec, | ||
experiment.float8_pct_top_peak, | ||
] | ||
) | ||
|
||
data_pd = pd.DataFrame(data, columns=headers) | ||
data_pd["pt_fp8_speedup"] = data_pd["ref_time_sec"] / data_pd["pt_fp8_time_sec"] | ||
data_pd["shape"] = ( | ||
"(" | ||
+ data_pd["M"].astype(str) | ||
+ ", " | ||
+ data_pd["K"].astype(str) | ||
+ ", " | ||
+ data_pd["N"].astype(str) | ||
+ ")" | ||
) | ||
|
||
data_pd_simple = data_pd[ | ||
[ | ||
"name", | ||
"shape", | ||
"scaling_repr", | ||
"compiled", | ||
"use_fast_accum", | ||
"ref_time_sec", | ||
"pt_fp8_time_sec", | ||
"pt_fp8_speedup", | ||
] | ||
] | ||
with pd_print_full_ctx: | ||
print(data_pd_simple) | ||
|
||
if sweep_path is not None: | ||
sweep_path = sweep_path.with_suffix(".csv") | ||
data_pd.to_csv(sweep_path) | ||
|
||
|
||
def invoke_main() -> None: | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("-o", "--output_path", type=str, required=False) | ||
parser.add_argument("--disable_compile", action="store_true") | ||
parser.add_argument("-n", "--n_limit", type=int, required=False) | ||
parser.add_argument("--fast_accum_filter", type=bool, required=False) | ||
parser.add_argument("--shape_name_filter", type=str, required=False) | ||
parser.add_argument("--scaling_type_input", type=str, required=False) | ||
parser.add_argument("--scaling_type_weight", type=str, required=False) | ||
parser.add_argument("--scaling_type_grad_output", type=str, required=False) | ||
args = parser.parse_args() | ||
output_path = Path(args.output_path) if args.output_path is not None else None | ||
kwargs = {} | ||
if args.scaling_type_input is not None: | ||
kwargs["scaling_type_input"] = args.scaling_type_input | ||
if args.scaling_type_weight is not None: | ||
kwargs["scaling_type_weight"] = args.scaling_type_weight | ||
if args.scaling_type_grad_output is not None: | ||
kwargs["scaling_type_grad_output"] = args.scaling_type_grad_output | ||
main( | ||
output_path, | ||
not args.disable_compile, | ||
args.n_limit, | ||
args.fast_accum_filter, | ||
args.shape_name_filter, | ||
**kwargs, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
invoke_main() # pragma: no cover |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
wanna mention a topline speedup marketing number?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
our last public number is from 2023H2, we plan to release new speedups in ~weeks but not ready yet. Will add it here when it's posted.