Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Float8 autoquant weight only #866

Merged
merged 6 commits into from
Sep 24, 2024
Merged

Float8 autoquant weight only #866

merged 6 commits into from
Sep 24, 2024

Conversation

jainapurva
Copy link
Contributor

@jainapurva jainapurva commented Sep 10, 2024

Added weight-only float8 quantization technique to autoquant. It runs the default kernel where dequantize is performed on float8 weight tensor followed by linear.

Updated the safe_int_mm to work on H100 for float8 dtypes.

Test Results

Llama 3.1 8b on H100

Int8 Autoquant - weight only

Float8 autoquant, with float16 and compile

  • Time for inference 5: 0.99 sec total
  • Average tokens/sec: 201.71
  • Average Bandwidth: 1519.97 GB/s
  • Peak Memory Usage: 12.04 GB
  • Model Size: 7.54 GB

Autoquant for float16 model and compile - int8wo

  • Time for inference 5: 0.98 sec total
  • Average tokens/sec: 203.48
  • Average Bandwidth: 1535.56 GB/s
  • Peak Memory Usage: 11.10 GB
  • Model Size: 7.55 GB

Copy link

pytorch-bot bot commented Sep 10, 2024

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/pytorch/ao/866

Note: Links to docs will display an error until the docs builds have been completed.

✅ No Failures

As of commit ce8ad06 with merge base e283743 (image):
💚 Looks good so far! There are no failures yet. 💚

This comment was automatically generated by Dr. CI and updates every 15 minutes.

@facebook-github-bot facebook-github-bot added the CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. label Sep 10, 2024
scripts/hf_eval.py Outdated Show resolved Hide resolved
scripts/prepare.sh Outdated Show resolved Hide resolved
@jainapurva jainapurva force-pushed the float8_weight_only_autoquant branch 4 times, most recently from aa900d8 to 74b55e3 Compare September 20, 2024 19:13
Copy link
Contributor

@HDCharles HDCharles left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

some additional things you should add:

  1. this option should probably detect the type of gpu you're using and only add float8 if its relevant
  2. make sure if you run it on H100 for Llama that when the op in question is chosen, it actually speeds things up
  3. add to CI like you mention, you can see the tests in the PR:
    https://github.com/pytorch/ao/pull/804/files

@jainapurva jainapurva force-pushed the float8_weight_only_autoquant branch 2 times, most recently from 77e5905 to 1e2a716 Compare September 23, 2024 00:41
@jainapurva
Copy link
Contributor Author

some additional things you should add:

  1. this option should probably detect the type of gpu you're using and only add float8 if its relevant
  2. make sure if you run it on H100 for Llama that when the op in question is chosen, it actually speeds things up
  3. add to CI like you mention, you can see the tests in the PR:
    https://github.com/pytorch/ao/pull/804/files

As discussed offline. I've added the autoquant in a separate list and architecture check. New kernels need to be added in future to improve the time. The current time is equivalent with int8.

@jainapurva jainapurva marked this pull request as ready for review September 23, 2024 16:00
Copy link
Contributor

@HDCharles HDCharles left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

looks good

nit: I would give a full list of updates in your PR description if possible
i.e. you also add H100 support for safe_int_mm

nit: it would probably be good to have a unit test for safe_int_mm on H100 even if it has to be run manually

@@ -69,7 +69,10 @@ def safe_int_mm(input: torch.Tensor, mat2: torch.Tensor) -> torch.Tensor:
input = (
input.contiguous()
) # (it seems the transpose makes cublas check the above j constraint on i)
return out_dtype(torch.ops.aten.mm.default, torch.int32, input, mat2)
try:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

maybe adding a comment to this would be helpful, how these two branches are handled?

Copy link
Contributor Author

@jainapurva jainapurva Sep 24, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The except is executed if it's a float8 dtype on H100, as there's no implementation for addmm_cuda for float8 dtypes. Added as comment

@jainapurva jainapurva merged commit 7dff17a into main Sep 24, 2024
17 checks passed
weifengpy pushed a commit to weifengpy/ao that referenced this pull request Sep 26, 2024
weifengpy added a commit that referenced this pull request Oct 1, 2024
…th torch.compile (#904)

* [float8] improve eager numerics for dynamic scales

* leave torch.linalg.vector_norm for another PR

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* cuda

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* remove _data and investigate

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* remove _data comment

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* upcast to float32 is enough

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* explain why float32

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* _data parity

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* handle sm8.9

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* fix transformer unit test

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* print if error

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* Add tutorial for trainable tensor subclass (#908)

Summary: The new tutorial provides an example of how to implement
a trainable tensor subclass that wraps quantized data. This extends
the existing `MyDTypeTensor` with a few necessary steps to ensure
proper gradient updates, namely:

1. Define a differentiable constructor
2. Define backward pass for ops of interest (e.g. torch.nn.functional.linear)
3. Handle special ops used by the optimizer (e.g. aten.add, aten.add_)

Test Plan:
python tutorials/developer_api_guide/my_trainable_tensor_subclass.py

* Introducing 1-bit quantization for Llama in torchchat (#910)

Differential Revision: D63052325

Pull Request resolved: #911

* Rename Floating point to fp8 (#909)

* [float8] fix typo in bitwise_identical unit test (#918)

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* Adding example for quantized tensor + tensor parallelism (#785)

* [WIP] Adding example for quantized tensor + tensor parallelism

Summary:
This PR adds an example of how quantized tensor subclass can work with DTensor: https://github.com/pytorch/pytorch/blob/main/torch/distributed/_tensor/README.md

End goal is to rewrite https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/models/llama2.py with normal llama2 implementation and show case with DTensor + AffineQuantizedTensor + torch.compile we can get on par performance with the custom tensor parallel implementation

Test Plan:
torchrun --standalone --nnodes=1 --nproc-per-node=4 tutorials/developer_api_guide/tensor_parallel.py

Reviewers:

Subscribers:

Tasks:

Tags:

* tensor parallel file

* Use DTensor.from instead of distribute_tensor

* implementing aten.slice.Tensor (WIP)

* working

* some shape fix and use more quant primitive ops

* Add rowwise test

* make rowwise sharding work

* compile still not working yet

* fake tensor didn't pick up shape changes from transpose

* backend='eager'

* change transpose to non-inplace op

* add error message

* works now with torch nightly

* remove print

* ruff

* Clean up

* Fix device id

---------

Co-authored-by: Ke Wen <kw2501@meta.com>

* rename cuda mode -> gpu mode (#925)

* Add workaround to recover the perf for quantized vit in torch.compile (#926)

Add temporary workaround to recover the perf for quantized vit under torch.compile

Summary:
Recently we found a perf drop in quantized vit due to #898 (comment)
This PR add a temp fix until we figure out the longer term fix.

I think ideally we should figure out why the tensor subclass check failed in torch.compile (https://github.com/pytorch/pytorch/blob/e4d294221b140fdbb49a64f297bc60c9fcc2f80e/torch/nn/modules/activation.py#L1286) and fix that

Test Plan:
python tutorials/quantize_vit/run_vit_b_quant.py

Reviewers:

Subscribers:

Tasks:

Tags:

* clean up device checks in float8 unit test files (#923)

Summary:

While working on rowwise scaling I noticed that some of the CUDA
device capability checks we had in the test files did not make sense,
cleaning this up.

Test Plan:

tests pass on my H100

CI, it should skip less tests now since CI only has CUDA capability 8, 9

Reviewers:

Subscribers:

Tasks:

Tags:

* [low-bit optim] Change 8-bit and FP8 optim block size from 2048 to 256 to match new bnb v0.44 (#927)

* Float8 autoquant weight only (#866)

* Fix failing FP6 benchmark (#931)

* Remove two if statements in fp8 padding (#935)

Reviewed By: vkuzo

Differential Revision: D63051205

Pull Request resolved: #935
Approved by: https://github.com/vkuzo

* [Distributed] Improve sharding example (#937)

* [Distributed] Improve sharding example

* Add comment

* Add composable QAT quantizer (#938)

Summary: This is a utility for users who wish to apply multiple
QAT quantizers to their models. In the near future, we expect
to add an embedding QAT quantizer that composes with the
existing linear QAT quantizers.

Test Plan:
python test/quantization/test_qat.py -k test_composable_qat_quantizer

* resolve conflict with latest main

Differential Revision: D63048850

Pull Request resolved: #912

* Add torchchat quantizer

Differential Revision: D62394341

Pull Request resolved: #897

* Add compile tests to test suite (#906)

* Add compile tests to test suite

Summary:
This is a follow up PR addressing #839 (comment)
We can add more compiler related tests in the future.

Next
* refactor a bit to use quantize_ API directly
* use the test suite in existing API tests

Test Plan:
python torchao/testing/utils.py

Reviewers:

Subscribers:

Tasks:

Tags:

* rename

* add result check

* Fix up CMakeLists and reorganize some code locations

Differential Revision: D62711903

Pull Request resolved: #948

* [float8] all-reduce amax on dp mesh instead of global pg (#933)

* [float8] all-reduce amax on dp mesh instead of global pg

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* liner

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* improve comments

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* move hp tensor inside if

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* int8 dynamic quant + bsr support (#821)

This PR, adds in int8 dynamicquant + bsr support.

Changes:
* Use i8i8 -> bf16 matmul to maintain accuracy
* Added a block sparse layout type to AffineQuantizedTensor + check/impl.  
* Cleaned up benchmark.py script and add a single line `benchmark.sh` file for acceleration numbers
* Updated eval.py and added a single line `evaluate.sh` file for accuracy numbers
* Lots of lint formatting and README updates
* torch.compile now working and is correct

* fixing some issues with our support for 70/405B models (#941)

Summary: download and convert scripts needed to be updated alongside
model.py config files

Test Plan: python generate.py --checkpoint_path ../../../checkpoints/meta-llama/Meta-Llama-3.1-70B/model.pth

Reviewers:

Subscribers:

Tasks:

Tags:

* Update INT8 mixed-precision training test to be less flaky (#950)

* Add executorch parallel

Differential Revision: D62711909

Pull Request resolved: #953

* test CI

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* better comment on why upcasting

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* control seed

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* move unit test to test_compile

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* fix typo

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* float64 upcasting after allreduce

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* use LinearMMConfig

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

---------

Co-authored-by: andrewor14 <andrewor14@gmail.com>
Co-authored-by: Vaishnavi Gupta <vaishnavi10367@gmail.com>
Co-authored-by: Apurva Jain <apurvajain.kota@gmail.com>
Co-authored-by: Jerry Zhang <jerryzh168@gmail.com>
Co-authored-by: Ke Wen <kw2501@meta.com>
Co-authored-by: Mark Saroufim <marksaroufim@meta.com>
Co-authored-by: Vasiliy Kuznetsov <vkuzo@users.noreply.github.com>
Co-authored-by: Thien Tran <gau.nernst@yahoo.com.sg>
Co-authored-by: Tobias van der Werff <33268192+tobiasvanderwerff@users.noreply.github.com>
Co-authored-by: Shuqi Yang <shuqiyang@meta.com>
Co-authored-by: Scott Roy <161522778+metascroy@users.noreply.github.com>
Co-authored-by: Jesse Cai <jessecai@meta.com>
Co-authored-by: HDCharles <39544797+HDCharles@users.noreply.github.com>
melvinebenezer pushed a commit to melvinebenezer/ao that referenced this pull request Oct 3, 2024
melvinebenezer pushed a commit to melvinebenezer/ao that referenced this pull request Oct 7, 2024
…th torch.compile (pytorch#904)

* [float8] improve eager numerics for dynamic scales

* leave torch.linalg.vector_norm for another PR

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* cuda

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* remove _data and investigate

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* remove _data comment

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* upcast to float32 is enough

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* explain why float32

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* _data parity

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* handle sm8.9

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* fix transformer unit test

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* print if error

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* Add tutorial for trainable tensor subclass (pytorch#908)

Summary: The new tutorial provides an example of how to implement
a trainable tensor subclass that wraps quantized data. This extends
the existing `MyDTypeTensor` with a few necessary steps to ensure
proper gradient updates, namely:

1. Define a differentiable constructor
2. Define backward pass for ops of interest (e.g. torch.nn.functional.linear)
3. Handle special ops used by the optimizer (e.g. aten.add, aten.add_)

Test Plan:
python tutorials/developer_api_guide/my_trainable_tensor_subclass.py

* Introducing 1-bit quantization for Llama in torchchat (pytorch#910)

Differential Revision: D63052325

Pull Request resolved: pytorch#911

* Rename Floating point to fp8 (pytorch#909)

* [float8] fix typo in bitwise_identical unit test (pytorch#918)

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* Adding example for quantized tensor + tensor parallelism (pytorch#785)

* [WIP] Adding example for quantized tensor + tensor parallelism

Summary:
This PR adds an example of how quantized tensor subclass can work with DTensor: https://github.com/pytorch/pytorch/blob/main/torch/distributed/_tensor/README.md

End goal is to rewrite https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/models/llama2.py with normal llama2 implementation and show case with DTensor + AffineQuantizedTensor + torch.compile we can get on par performance with the custom tensor parallel implementation

Test Plan:
torchrun --standalone --nnodes=1 --nproc-per-node=4 tutorials/developer_api_guide/tensor_parallel.py

Reviewers:

Subscribers:

Tasks:

Tags:

* tensor parallel file

* Use DTensor.from instead of distribute_tensor

* implementing aten.slice.Tensor (WIP)

* working

* some shape fix and use more quant primitive ops

* Add rowwise test

* make rowwise sharding work

* compile still not working yet

* fake tensor didn't pick up shape changes from transpose

* backend='eager'

* change transpose to non-inplace op

* add error message

* works now with torch nightly

* remove print

* ruff

* Clean up

* Fix device id

---------

Co-authored-by: Ke Wen <kw2501@meta.com>

* rename cuda mode -> gpu mode (pytorch#925)

* Add workaround to recover the perf for quantized vit in torch.compile (pytorch#926)

Add temporary workaround to recover the perf for quantized vit under torch.compile

Summary:
Recently we found a perf drop in quantized vit due to pytorch#898 (comment)
This PR add a temp fix until we figure out the longer term fix.

I think ideally we should figure out why the tensor subclass check failed in torch.compile (https://github.com/pytorch/pytorch/blob/e4d294221b140fdbb49a64f297bc60c9fcc2f80e/torch/nn/modules/activation.py#L1286) and fix that

Test Plan:
python tutorials/quantize_vit/run_vit_b_quant.py

Reviewers:

Subscribers:

Tasks:

Tags:

* clean up device checks in float8 unit test files (pytorch#923)

Summary:

While working on rowwise scaling I noticed that some of the CUDA
device capability checks we had in the test files did not make sense,
cleaning this up.

Test Plan:

tests pass on my H100

CI, it should skip less tests now since CI only has CUDA capability 8, 9

Reviewers:

Subscribers:

Tasks:

Tags:

* [low-bit optim] Change 8-bit and FP8 optim block size from 2048 to 256 to match new bnb v0.44 (pytorch#927)

* Float8 autoquant weight only (pytorch#866)

* Fix failing FP6 benchmark (pytorch#931)

* Remove two if statements in fp8 padding (pytorch#935)

Reviewed By: vkuzo

Differential Revision: D63051205

Pull Request resolved: pytorch#935
Approved by: https://github.com/vkuzo

* [Distributed] Improve sharding example (pytorch#937)

* [Distributed] Improve sharding example

* Add comment

* Add composable QAT quantizer (pytorch#938)

Summary: This is a utility for users who wish to apply multiple
QAT quantizers to their models. In the near future, we expect
to add an embedding QAT quantizer that composes with the
existing linear QAT quantizers.

Test Plan:
python test/quantization/test_qat.py -k test_composable_qat_quantizer

* resolve conflict with latest main

Differential Revision: D63048850

Pull Request resolved: pytorch#912

* Add torchchat quantizer

Differential Revision: D62394341

Pull Request resolved: pytorch#897

* Add compile tests to test suite (pytorch#906)

* Add compile tests to test suite

Summary:
This is a follow up PR addressing pytorch#839 (comment)
We can add more compiler related tests in the future.

Next
* refactor a bit to use quantize_ API directly
* use the test suite in existing API tests

Test Plan:
python torchao/testing/utils.py

Reviewers:

Subscribers:

Tasks:

Tags:

* rename

* add result check

* Fix up CMakeLists and reorganize some code locations

Differential Revision: D62711903

Pull Request resolved: pytorch#948

* [float8] all-reduce amax on dp mesh instead of global pg (pytorch#933)

* [float8] all-reduce amax on dp mesh instead of global pg

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* liner

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* improve comments

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* move hp tensor inside if

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* linter

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* int8 dynamic quant + bsr support (pytorch#821)

This PR, adds in int8 dynamicquant + bsr support.

Changes:
* Use i8i8 -> bf16 matmul to maintain accuracy
* Added a block sparse layout type to AffineQuantizedTensor + check/impl.  
* Cleaned up benchmark.py script and add a single line `benchmark.sh` file for acceleration numbers
* Updated eval.py and added a single line `evaluate.sh` file for accuracy numbers
* Lots of lint formatting and README updates
* torch.compile now working and is correct

* fixing some issues with our support for 70/405B models (pytorch#941)

Summary: download and convert scripts needed to be updated alongside
model.py config files

Test Plan: python generate.py --checkpoint_path ../../../checkpoints/meta-llama/Meta-Llama-3.1-70B/model.pth

Reviewers:

Subscribers:

Tasks:

Tags:

* Update INT8 mixed-precision training test to be less flaky (pytorch#950)

* Add executorch parallel

Differential Revision: D62711909

Pull Request resolved: pytorch#953

* test CI

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* better comment on why upcasting

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* control seed

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* move unit test to test_compile

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* fix typo

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* float64 upcasting after allreduce

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

* use LinearMMConfig

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

---------

Co-authored-by: andrewor14 <andrewor14@gmail.com>
Co-authored-by: Vaishnavi Gupta <vaishnavi10367@gmail.com>
Co-authored-by: Apurva Jain <apurvajain.kota@gmail.com>
Co-authored-by: Jerry Zhang <jerryzh168@gmail.com>
Co-authored-by: Ke Wen <kw2501@meta.com>
Co-authored-by: Mark Saroufim <marksaroufim@meta.com>
Co-authored-by: Vasiliy Kuznetsov <vkuzo@users.noreply.github.com>
Co-authored-by: Thien Tran <gau.nernst@yahoo.com.sg>
Co-authored-by: Tobias van der Werff <33268192+tobiasvanderwerff@users.noreply.github.com>
Co-authored-by: Shuqi Yang <shuqiyang@meta.com>
Co-authored-by: Scott Roy <161522778+metascroy@users.noreply.github.com>
Co-authored-by: Jesse Cai <jessecai@meta.com>
Co-authored-by: HDCharles <39544797+HDCharles@users.noreply.github.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants