-
Notifications
You must be signed in to change notification settings - Fork 663
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Refactor LibriSpeech Conformer RNN-T recipe #2366
Changes from 1 commit
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
import torch | ||
import torchaudio | ||
from pytorch_lightning import LightningDataModule, seed_everything | ||
|
||
import os | ||
import random | ||
|
||
|
||
seed_everything(1) | ||
|
||
|
||
def _batch_by_token_count(idx_target_lengths, token_limit, sample_limit=None): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can you change sample_limit to batch_size and token_limit to max_tokens per our previous discussion? It's ok if you want to do that in another PR. |
||
batches = [] | ||
current_batch = [] | ||
current_token_count = 0 | ||
for idx, target_length in idx_target_lengths: | ||
if current_token_count + target_length > token_limit or (sample_limit and len(current_batch) == sample_limit): | ||
batches.append(current_batch) | ||
current_batch = [idx] | ||
current_token_count = target_length | ||
else: | ||
current_batch.append(idx) | ||
current_token_count += target_length | ||
|
||
if current_batch: | ||
batches.append(current_batch) | ||
|
||
return batches | ||
|
||
|
||
def get_sample_lengths(librispeech_dataset): | ||
fileid_to_target_length = {} | ||
|
||
def _target_length(fileid): | ||
if fileid not in fileid_to_target_length: | ||
speaker_id, chapter_id, _ = fileid.split("-") | ||
|
||
file_text = speaker_id + "-" + chapter_id + librispeech_dataset._ext_txt | ||
file_text = os.path.join(librispeech_dataset._path, speaker_id, chapter_id, file_text) | ||
|
||
with open(file_text) as ft: | ||
for line in ft: | ||
fileid_text, transcript = line.strip().split(" ", 1) | ||
fileid_to_target_length[fileid_text] = len(transcript) | ||
|
||
return fileid_to_target_length[fileid] | ||
|
||
return [_target_length(fileid) for fileid in librispeech_dataset._walker] | ||
|
||
|
||
class CustomBucketDataset(torch.utils.data.Dataset): | ||
def __init__(self, dataset, lengths, max_token_limit, num_buckets, shuffle=False, sample_limit=None): | ||
super().__init__() | ||
|
||
assert len(dataset) == len(lengths) | ||
|
||
self.dataset = dataset | ||
|
||
max_length = max(lengths) | ||
min_length = min(lengths) | ||
|
||
assert max_token_limit >= max_length | ||
|
||
buckets = torch.linspace(min_length, max_length, num_buckets) | ||
lengths = torch.tensor(lengths) | ||
bucket_assignments = torch.bucketize(lengths, buckets) | ||
|
||
idx_length_buckets = [(idx, length, bucket_assignments[idx]) for idx, length in enumerate(lengths)] | ||
if shuffle: | ||
idx_length_buckets = random.sample(idx_length_buckets, len(idx_length_buckets)) | ||
else: | ||
idx_length_buckets = sorted(idx_length_buckets, key=lambda x: x[1], reverse=True) | ||
|
||
sorted_idx_length_buckets = sorted(idx_length_buckets, key=lambda x: x[2]) | ||
self.batches = _batch_by_token_count( | ||
[(idx, length) for idx, length, _ in sorted_idx_length_buckets], max_token_limit, sample_limit=sample_limit | ||
) | ||
|
||
def __getitem__(self, idx): | ||
return [self.dataset[subidx] for subidx in self.batches[idx]] | ||
|
||
def __len__(self): | ||
return len(self.batches) | ||
|
||
|
||
class TransformDataset(torch.utils.data.Dataset): | ||
def __init__(self, dataset, transform_fn): | ||
self.dataset = dataset | ||
self.transform_fn = transform_fn | ||
|
||
def __getitem__(self, idx): | ||
return self.transform_fn(self.dataset[idx]) | ||
|
||
def __len__(self): | ||
return len(self.dataset) | ||
|
||
|
||
class LibriSpeechDataModule(LightningDataModule): | ||
def __init__( | ||
self, | ||
*, | ||
librispeech_path, | ||
train_transform, | ||
val_transform, | ||
test_transform, | ||
max_token_limit=700, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. max_tokens should be fine. "max" duplicates with "limit" |
||
sample_limit=2, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. batch_size |
||
train_num_buckets=50, | ||
train_shuffle=True, | ||
num_workers=10, | ||
): | ||
self.librispeech_path = librispeech_path | ||
self.train_dataset_lengths = None | ||
self.val_dataset_lengths = None | ||
self.train_transform = train_transform | ||
self.val_transform = val_transform | ||
self.test_transform = test_transform | ||
self.max_token_limit = max_token_limit | ||
self.sample_limit = sample_limit | ||
self.train_num_buckets = train_num_buckets | ||
self.train_shuffle = train_shuffle | ||
self.num_workers = num_workers | ||
|
||
def train_dataloader(self): | ||
datasets = [ | ||
torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="train-clean-360"), | ||
torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="train-clean-100"), | ||
torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="train-other-500"), | ||
] | ||
|
||
if not self.train_dataset_lengths: | ||
self.train_dataset_lengths = [get_sample_lengths(dataset) for dataset in datasets] | ||
|
||
dataset = torch.utils.data.ConcatDataset( | ||
[ | ||
CustomBucketDataset( | ||
dataset, lengths, self.max_token_limit, self.train_num_buckets, sample_limit=self.sample_limit, | ||
) | ||
for dataset, lengths in zip(datasets, self.train_dataset_lengths) | ||
] | ||
) | ||
dataset = TransformDataset(dataset, self.train_transform) | ||
dataloader = torch.utils.data.DataLoader( | ||
dataset, num_workers=self.num_workers, batch_size=None, shuffle=self.train_shuffle | ||
) | ||
return dataloader | ||
|
||
def val_dataloader(self): | ||
datasets = [ | ||
torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="dev-clean"), | ||
torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="dev-other"), | ||
] | ||
|
||
if not self.val_dataset_lengths: | ||
self.val_dataset_lengths = [get_sample_lengths(dataset) for dataset in datasets] | ||
|
||
dataset = torch.utils.data.ConcatDataset( | ||
[ | ||
CustomBucketDataset(dataset, lengths, self.max_token_limit, 1, sample_limit=self.sample_limit) | ||
for dataset, lengths in zip(datasets, self.val_dataset_lengths) | ||
] | ||
) | ||
dataset = TransformDataset(dataset, self.val_transform) | ||
dataloader = torch.utils.data.DataLoader(dataset, batch_size=None, num_workers=self.num_workers) | ||
return dataloader | ||
|
||
def test_dataloader(self): | ||
dataset = torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="test-clean") | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. better make the eval split customizable as we discussed. again I can do that in a later PR as well. |
||
dataset = TransformDataset(dataset, self.test_transform) | ||
dataloader = torch.utils.data.DataLoader(dataset, batch_size=None) | ||
return dataloader |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is this the right place to seed? I would imagine this happen once (and only once) at the very beginning of the CLI entry point.