Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[doc][c10d] fixup fsdp tutorial #1297

Merged
merged 1 commit into from
Nov 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 12 additions & 11 deletions distributed/FSDP/T5_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from transformers.models.t5.modeling_t5 import T5Block
from nlp import load_dataset

from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
Expand Down Expand Up @@ -86,11 +87,11 @@ def fsdp_main(args):
print("Size of train dataset: ", dataset['train'].shape)
print("Size of Validation dataset: ", dataset['validation'].shape)


#wikihow(tokenizer, type_path, num_samples, input_length, output_length, print_text=False)
train_dataset = wikihow(tokenizer, 'train', 1500, 512, 150, False)
train_dataset = wikihow(tokenizer, 'train', 1500, 512, 150, False)
val_dataset = wikihow(tokenizer, 'validation', 300, 512, 150, False)

sampler1 = DistributedSampler(train_dataset, rank=rank, num_replicas=world_size, shuffle=True)
sampler2 = DistributedSampler(val_dataset, rank=rank, num_replicas=world_size)

Expand All @@ -107,20 +108,20 @@ def fsdp_main(args):

train_loader = torch.utils.data.DataLoader(train_dataset,**train_kwargs)
val_loader = torch.utils.data.DataLoader(val_dataset, **test_kwargs)

torch.cuda.set_device(local_rank)

# Set up FSDP parameters
mixed_precision_policy, t5_auto_wrap_policy = get_policies(train_config, rank)

# Apply FSDP wrapping to the model
model = FSDP(model,
auto_wrap_policy=t5_auto_wrap_policy,
mixed_precision=mixed_precision_policy,
sharding_strategy=fsdp_config.sharding_strategy,
device_id=torch.cuda.current_device(),
limit_all_gathers=fsdp_config.limit_all_gathers)

# Enabling this causes https://github.com/pytorch/examples/issues/1210
if fsdp_config.fsdp_activation_checkpointing:
policies.apply_fsdp_checkpointing(model)
Expand Down Expand Up @@ -150,7 +151,7 @@ def fsdp_main(args):
if args.run_validation:
curr_val_loss = validation(model, rank, world_size, val_loader)
scheduler.step()

if rank == 0:

print(f"--> epoch {epoch} completed...entering save and stats zone")
Expand All @@ -170,7 +171,7 @@ def fsdp_main(args):
)

if train_config.save_model and curr_val_loss < best_val_loss:

if fsdp_config.checkpoint_type == StateDictType.FULL_STATE_DICT:
model_checkpointing.save_model_checkpoint(
model, optimizer, rank, fsdp_config, epoch=1
Expand All @@ -183,7 +184,7 @@ def fsdp_main(args):
if fsdp_config.save_optimizer:
model_checkpointing.save_optimizer_checkpoint(
model, optimizer, rank, fsdp_config, epoch=1
)
)
if curr_val_loss < best_val_loss:

best_val_loss = curr_val_loss
Expand Down Expand Up @@ -212,5 +213,5 @@ def fsdp_main(args):
args = parser.parse_args()

torch.manual_seed(args.seed)

fsdp_main(args)
16 changes: 8 additions & 8 deletions distributed/FSDP/model_checkpointing/checkpoint_handler.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# ShardedStateDictConfig, # un-flattened param but shards, usable by other parallel schemes.
)

from torch.distributed._shard.checkpoint import (
from torch.distributed.checkpoint import (
FileSystemReader,
FileSystemWriter,
save_state_dict,
Expand All @@ -24,7 +24,7 @@


from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
import torch.distributed._shard.checkpoint as dist_cp
import torch.distributed.checkpoint as dist_cp
import torch.distributed as dist


Expand Down Expand Up @@ -65,7 +65,7 @@ def load_model_sharded(model, rank, cfg, verbose=True):
if rank == 0:
ck = checkpoint.keys()
print(f" checkpoint key len = {len(ck)} and \n keys = {ck}")

dist_cp.load_state_dict(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The DCP usage is pretty outdated. Should we also update them?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I will update this in a subsequent change - if that's ok with you?
This change is already too large as I am fixing up the python tests that broke.
The breakage is unrelated to this change.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sure

state_dict=checkpoint,
storage_reader=reader,
Expand Down Expand Up @@ -108,7 +108,7 @@ def save_model_and_optimizer_sharded(model, rank, cfg,optim=None, verbose=True):
state_dict=state_dict,
storage_writer=distributed_writer,
planner=DefaultSavePlanner(),

)
dist.barrier()
t1 = time.perf_counter()
Expand All @@ -117,7 +117,7 @@ def save_model_and_optimizer_sharded(model, rank, cfg,optim=None, verbose=True):
print(
f"Checkpoint Time = {t1-t0:.4f}\n using {cfg.save_using_num_threads=} total threads"
)

def save_model_checkpoint(
model,
optimizer,
Expand All @@ -138,7 +138,7 @@ def save_model_checkpoint(

if cfg.verbose:
print(f"saving process: rank {rank} done w model state_dict\n")


if rank == 0:
print(f"--> saving model ...")
Expand All @@ -153,7 +153,7 @@ def save_model_checkpoint(

if cfg.verbose:
print(f"model checkpoint saved for epoch {epoch} at {save_full_path}\n")



def load_model_checkpoint(model, rank, cfg, verbose=True):
Expand Down Expand Up @@ -299,7 +299,7 @@ def save_distributed_model_checkpoint(model, rank, cfg, epoch=1):
StateDictType.LOCAL_STATE_DICT,
):
state_dict = model.state_dict()


# write out distributed checkpoint
save_state_dict(state_dict, writer)
Expand Down
1 change: 1 addition & 0 deletions distributed/FSDP/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,3 +3,4 @@ datasets
tqdm
protobuf
SentencePiece
nlp
39 changes: 19 additions & 20 deletions distributed/FSDP/summarization_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,7 @@
import torch
from torch.utils.data import Dataset, DataLoader

from datasets import load_dataset, load_metric

from nlp import load_dataset

from transformers import (
AdamW,
Expand All @@ -25,59 +24,59 @@
)

class wikihow(Dataset):
def __init__(self, tokenizer, type_path, num_samples, input_length, output_length, print_text=False):
def __init__(self, tokenizer, type_path, num_samples, input_length, output_length, print_text=False):
self.dataset = load_dataset('wikihow', 'all', data_dir='data/', split=type_path)
if num_samples:
self.dataset = self.dataset.select(list(range(0, num_samples)))
self.input_length = input_length
self.tokenizer = tokenizer
self.output_length = output_length
self.print_text = print_text

def __len__(self):
return self.dataset.shape[0]

def clean_text(self, text):
text = text.replace('Example of text:', '')
text = text.replace('Example of Summary:', '')
text = text.replace('\n','')
text = text.replace('``', '')
text = text.replace('"', '')

return text


def convert_to_features(self, example_batch):
# Tokenize contexts and questions (as pairs of inputs)

if self.print_text:
print("Input Text: ", self.clean_text(example_batch['text']))
# input_ = self.clean_text(example_batch['text']) + " </s>"
# target_ = self.clean_text(example_batch['headline']) + " </s>"

input_ = self.clean_text(example_batch['text'])
target_ = self.clean_text(example_batch['headline'])
source = self.tokenizer.batch_encode_plus([input_], max_length=self.input_length,

source = self.tokenizer.batch_encode_plus([input_], max_length=self.input_length,
padding='max_length', truncation=True, return_tensors="pt")
targets = self.tokenizer.batch_encode_plus([target_], max_length=self.output_length,

targets = self.tokenizer.batch_encode_plus([target_], max_length=self.output_length,
padding='max_length', truncation=True, return_tensors="pt")


return source, targets

def __getitem__(self, index):
source, targets = self.convert_to_features(self.dataset[index])

source_ids = source["input_ids"].squeeze()
target_ids = targets["input_ids"].squeeze()

src_mask = source["attention_mask"].squeeze()
target_mask = targets["attention_mask"].squeeze()

return {"source_ids": source_ids, "source_mask": src_mask, "target_ids": target_ids, "target_mask": target_mask}

def get_dataset(tokenizer, type_path, num_samples, args):
return wikihow(tokenizer=tokenizer, type_path=type_path, num_samples=num_samples, input_length=max_input_length,
return wikihow(tokenizer=tokenizer, type_path=type_path, num_samples=num_samples, input_length=max_input_length,
output_length=max_output_length)
4 changes: 2 additions & 2 deletions distributed/FSDP/utils/train_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def train(args, model, rank, world_size, train_loader, optimizer, epoch, sampler
model.train()
local_rank = int(os.environ['LOCAL_RANK'])
fsdp_loss = torch.zeros(2).to(local_rank)

if sampler:
sampler.set_epoch(epoch)
if rank==0:
Expand Down Expand Up @@ -98,5 +98,5 @@ def validation(model, rank, world_size, val_loader):

def setup_model(model_name):
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name, legacy=False)
return model, tokenizer
Loading