Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 0 additions & 12 deletions backends/cadence/aot/ops_registrations.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,6 @@ def _validate_ref_impl_exists() -> None:
"cadence::dequantize_per_tensor_asym8u",
"cadence::dequantize_per_tensor_asym32s",
"cadence::dequantize_per_tensor_asym16u",
"cadence::linalg_vector_norm",
"cadence::quantized_conv2d_nchw", # We should only support per_tensor variant, should remove
"cadence::quantize_per_tensor_asym32s",
"cadence::quantized_relu", # We should only support per_tensor variant, should remove
Expand Down Expand Up @@ -447,7 +446,6 @@ def register_fake(
"im2row.per_tensor(Tensor input, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, "
"int in_zero_point, bool channel_last=False) -> (Tensor out)"
)
lib.define("linalg_vector_norm(Tensor X) -> (Tensor Y)")
lib.define(
"linalg_svd(Tensor A, bool full_matrices=False, bool compute_uv=True, str? driver=None) -> (Tensor U, Tensor S, Tensor Vh)"
)
Expand Down Expand Up @@ -603,7 +601,6 @@ def register_fake(
lib.define(
"fully_connected.out(Tensor input, Tensor weight, Tensor? bias=None, *, Tensor(a!) out) -> Tensor(a!)"
)
lib.define("linalg_vector_norm.out(Tensor X, *, Tensor(a!) out) -> Tensor(a!)")
lib.define(
"quantized_fully_connected.out(Tensor src, Tensor weight, Tensor bias, int src_zero_point, "
"Tensor weight_zero_point, Tensor out_multiplier, Tensor out_shift, int out_zero_point, Tensor? offset, *, Tensor(a!) out) -> Tensor(a!)"
Expand Down Expand Up @@ -2007,15 +2004,6 @@ def im2row_per_tensor_meta(
return input.new_empty(output_size, dtype=input.dtype)


# Define the abstract implementations of the operators as required
@register_fake("cadence::linalg_vector_norm")
def linalg_vector_norm_meta(
X: torch.Tensor,
) -> torch.Tensor:
# Output of norm is a scalar, so we return a [] tensor
return X.new_empty([], dtype=X.dtype)


@register_fake("cadence::linalg_svd")
def linalg_svd_meta(
A: torch.Tensor,
Expand Down
Loading