Skip to content

Commit

Permalink
Revert "Update calls to torch.hub.* to use trust_repo=True. (#281)" (
Browse files Browse the repository at this point in the history
…#286)

This reverts commit 5c690fa.
  • Loading branch information
NicolasHug authored May 16, 2022
1 parent 5c690fa commit 23d4266
Show file tree
Hide file tree
Showing 24 changed files with 23 additions and 26 deletions.
2 changes: 1 addition & 1 deletion datvuthanh_hybridnets.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ This example loads the pretrained **HybridNets** model and passes an image for i
import torch

# load model
model = torch.hub.load('datvuthanh/hybridnets', 'hybridnets', pretrained=True, trust_repo=True)
model = torch.hub.load('datvuthanh/hybridnets', 'hybridnets', pretrained=True)

#inference
img = torch.randn(1,3,640,384)
Expand Down
2 changes: 1 addition & 1 deletion huggingface_pytorch-transformers.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ The tokenizer object allows the conversion from character strings to tokens unde

```py
import torch
tokenizer = torch.hub.load('huggingface/pytorch-transformers', trust_repo=True, 'tokenizer', 'bert-base-uncased') # Download vocabulary from S3 and cache.
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'tokenizer', 'bert-base-uncased') # Download vocabulary from S3 and cache.
tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'tokenizer', './test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
```

Expand Down
2 changes: 1 addition & 1 deletion hustvl_yolop.md
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ This example loads the pretrained **YOLOP** model and passes an image for infere
import torch

# load model
model = torch.hub.load('hustvl/yolop', 'yolop', trust_repo=True, pretrained=True)
model = torch.hub.load('hustvl/yolop', 'yolop', pretrained=True)

#inference
img = torch.randn(1,3,640,640)
Expand Down
2 changes: 1 addition & 1 deletion intelisl_midas_v2.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest i
#model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed)
#model_type = "MiDaS_small" # MiDaS v2.1 - Small (lowest accuracy, highest inference speed)

midas = torch.hub.load("intel-isl/MiDaS", model_type, trust_repo=True)
midas = torch.hub.load("intel-isl/MiDaS", model_type)
```
Move model to GPU if available
```python
Expand Down
2 changes: 1 addition & 1 deletion mateuszbuda_brain-segmentation-pytorch_unet.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ demo-model-link: https://huggingface.co/spaces/pytorch/U-NET-for-brain-MRI

```python
import torch
model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch', 'unet', trust_repo=True,
model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch', 'unet',
in_channels=3, out_channels=1, init_features=32, pretrained=True)

```
Expand Down
2 changes: 1 addition & 1 deletion nicolalandro_ntsnet-cub200_ntsnet.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ demo-model-link: https://huggingface.co/spaces/pytorch/NTSNET

```python
import torch
model = torch.hub.load('nicolalandro/ntsnet-cub200', 'ntsnet', trust_repo=True, pretrained=True,
model = torch.hub.load('nicolalandro/ntsnet-cub200', 'ntsnet', pretrained=True,
**{'topN': 6, 'device':'cpu', 'num_classes': 200})
```

Expand Down
2 changes: 1 addition & 1 deletion nvidia_deeplearningexamples_efficientnet.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ You can choose among the following models:

There are also quantized version of the models, but they require nvidia container. See [quantized models](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/efficientnet#quantization)
```python
efficientnet = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_efficientnet_b0', trust_repo=True, pretrained=True)
efficientnet = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_efficientnet_b0', pretrained=True)
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')

efficientnet.eval().to(device)
Expand Down
2 changes: 1 addition & 1 deletion nvidia_deeplearningexamples_resnet50.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ print(f'Using {device} for inference')

Load the model pretrained on IMAGENET dataset.
```python
resnet50 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resnet50', pretrained=True, trust_repo=True)
resnet50 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resnet50', pretrained=True)
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')

resnet50.eval().to(device)
Expand Down
2 changes: 1 addition & 1 deletion nvidia_deeplearningexamples_resnext.md
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ print(f'Using {device} for inference')

Load the model pretrained on IMAGENET dataset.
```python
resneXt = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resneXt', trust_repo=True)
resneXt = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resneXt')
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')

resneXt.eval().to(device)
Expand Down
2 changes: 1 addition & 1 deletion nvidia_deeplearningexamples_se-resnext.md
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ print(f'Using {device} for inference')

Load the model pretrained on IMAGENET dataset.
```python
resneXt = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_se_resnext101_32x4d', trust_repo=True)
resneXt = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_se_resnext101_32x4d')
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')

resneXt.eval().to(device)
Expand Down
2 changes: 1 addition & 1 deletion nvidia_deeplearningexamples_ssd.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ pip install numpy scipy scikit-image matplotlib
Load an SSD model pretrained on COCO dataset, as well as a set of utility methods for convenient and comprehensive formatting of input and output of the model.
```python
import torch
ssd_model = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd', trust_repo=True)
ssd_model = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd')
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd_processing_utils')
```

Expand Down
2 changes: 1 addition & 1 deletion nvidia_deeplearningexamples_tacotron2.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ apt-get install -y libsndfile1
Load the Tacotron2 model pre-trained on [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/) and prepare it for inference:
```python
import torch
tacotron2 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tacotron2', trust_repo=True, model_math='fp16')
tacotron2 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tacotron2', model_math='fp16')
tacotron2 = tacotron2.to('cuda')
tacotron2.eval()
```
Expand Down
2 changes: 1 addition & 1 deletion nvidia_deeplearningexamples_waveglow.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ apt-get install -y libsndfile1
Load the WaveGlow model pre-trained on [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/)
```python
import torch
waveglow = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_waveglow', trust_repo=True, model_math='fp32')
waveglow = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_waveglow', model_math='fp32')
```

Prepare the WaveGlow model for inference
Expand Down
2 changes: 1 addition & 1 deletion pytorch_vision_ghostnet.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ demo-model-link: https://huggingface.co/spaces/pytorch/GhostNet

```python
import torch
model = torch.hub.load('huawei-noah/ghostnet', 'ghostnet_1x', pretrained=True, trust_repo=True)
model = torch.hub.load('huawei-noah/ghostnet', 'ghostnet_1x', pretrained=True)
model.eval()
```

Expand Down
2 changes: 1 addition & 1 deletion pytorch_vision_hardnet.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ demo-model-link: https://huggingface.co/spaces/pytorch/HardNet

```python
import torch
model = torch.hub.load('PingoLH/Pytorch-HarDNet', 'hardnet68', pretrained=True, trust_repo=True)
model = torch.hub.load('PingoLH/Pytorch-HarDNet', 'hardnet68', pretrained=True)
# or any of these variants
# model = torch.hub.load('PingoLH/Pytorch-HarDNet', 'hardnet85', pretrained=True)
# model = torch.hub.load('PingoLH/Pytorch-HarDNet', 'hardnet68ds', pretrained=True)
Expand Down
2 changes: 1 addition & 1 deletion pytorch_vision_ibnnet.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ demo-model-link: https://huggingface.co/spaces/pytorch/IBN-Net

```python
import torch
model = torch.hub.load('XingangPan/IBN-Net', 'resnet50_ibn_a', pretrained=True, trust_repo=True)
model = torch.hub.load('XingangPan/IBN-Net', 'resnet50_ibn_a', pretrained=True)
model.eval()
```

Expand Down
2 changes: 1 addition & 1 deletion pytorch_vision_meal_v2.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ We require one additional Python dependency
import torch
# list of models: 'mealv1_resnest50', 'mealv2_resnest50', 'mealv2_resnest50_cutmix', 'mealv2_resnest50_380x380', 'mealv2_mobilenetv3_small_075', 'mealv2_mobilenetv3_small_100', 'mealv2_mobilenet_v3_large_100', 'mealv2_efficientnet_b0'
# load pretrained models, using "mealv2_resnest50_cutmix" as an example
model = torch.hub.load('szq0214/MEAL-V2','meal_v2', 'mealv2_resnest50_cutmix', pretrained=True, trust_repo=True)
model = torch.hub.load('szq0214/MEAL-V2','meal_v2', 'mealv2_resnest50_cutmix', pretrained=True)
model.eval()
```

Expand Down
2 changes: 1 addition & 1 deletion pytorch_vision_proxylessnas.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ demo-model-link: https://huggingface.co/spaces/pytorch/ProxylessNAS
import torch
target_platform = "proxyless_cpu"
# proxyless_gpu, proxyless_mobile, proxyless_mobile14 are also avaliable.
model = torch.hub.load('mit-han-lab/ProxylessNAS', target_platform, pretrained=True, trust_repo=True)
model = torch.hub.load('mit-han-lab/ProxylessNAS', target_platform, pretrained=True)
model.eval()
```

Expand Down
4 changes: 2 additions & 2 deletions pytorch_vision_resnest.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,9 @@ demo-model-link: https://huggingface.co/spaces/pytorch/ResNeSt
```python
import torch
# get list of models
torch.hub.list('zhanghang1989/ResNeSt', force_reload=True, trust_repo=True)
torch.hub.list('zhanghang1989/ResNeSt', force_reload=True)
# load pretrained models, using ResNeSt-50 as an example
model = torch.hub.load('zhanghang1989/ResNeSt', 'resnest50', pretrained=True, trust_repo=True)
model = torch.hub.load('zhanghang1989/ResNeSt', 'resnest50', pretrained=True)
model.eval()
```

Expand Down
2 changes: 1 addition & 1 deletion sigsep_open-unmix-pytorch_umx.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ pip install -q torchaudio
import torch

# loading umxhq four target separator
separator = torch.hub.load('sigsep/open-unmix-pytorch', 'umxhq', trust_repo=True)
separator = torch.hub.load('sigsep/open-unmix-pytorch', 'umxhq')

# generate random audio
# ... with shape (nb_samples, nb_channels, nb_timesteps)
Expand Down
1 change: 0 additions & 1 deletion snakers4_silero-models_stt.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,6 @@ device = torch.device('cpu') # gpu also works, but our models are fast enough f

model, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models',
model='silero_stt',
trust_repo=True,
language='en', # also available 'de', 'es'
device=device)
(read_batch, split_into_batches,
Expand Down
1 change: 0 additions & 1 deletion snakers4_silero-models_tts.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@ speaker = 'lj_16khz'
device = torch.device('cpu')
model, symbols, sample_rate, example_text, apply_tts = torch.hub.load(repo_or_dir='snakers4/silero-models',
model='silero_tts',
trust_repo=True,
language=language,
speaker=speaker)
model = model.to(device) # gpu or cpu
Expand Down
3 changes: 1 addition & 2 deletions snakers4_silero-vad_vad.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,8 +33,7 @@ torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', 'en

model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',
model='silero_vad',
force_reload=True,
trust_repo=True)
force_reload=True)

(get_speech_timestamps,
_, read_audio,
Expand Down
2 changes: 1 addition & 1 deletion ultralytics_yolov5.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ This example loads a pretrained **YOLOv5s** model and passes an image for infere
import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, trust_repo=True)
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)

# Images
imgs = ['https://ultralytics.com/images/zidane.jpg'] # batch of images
Expand Down

0 comments on commit 23d4266

Please sign in to comment.