Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 1 addition & 6 deletions examples/contrib/cifar10/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -192,12 +192,7 @@ def get_dataflow(config):

# Setup data loader also adapted to distributed config: nccl, gloo, xla-tpu
train_loader = idist.auto_dataloader(
train_dataset,
batch_size=config["batch_size"],
num_workers=config["num_workers"],
shuffle=True,
pin_memory="cuda" in idist.device().type,
drop_last=True,
train_dataset, batch_size=config["batch_size"], num_workers=config["num_workers"], shuffle=True, drop_last=True,
)

test_loader = idist.auto_dataloader(
Expand Down
3 changes: 3 additions & 0 deletions ignite/distributed/auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ def auto_dataloader(dataset, **kwargs):
- number of workers is scaled by number of local processes: ``num_workers / nprocs``.
- if no sampler provided by user, `torch DistributedSampler` is setup.
- if a sampler is provided by user, it is wrapped by :class:`~ignite.distributed.auto.DistributedProxySampler`.
- if the default device is 'cuda', `pin_memory` is automatically set to `True`.

.. warning::

Expand Down Expand Up @@ -96,6 +97,8 @@ def auto_dataloader(dataset, **kwargs):
"Argument `pin_memory=False` will be used to construct data loader."
)
kwargs["pin_memory"] = False
else:
kwargs["pin_memory"] = kwargs.get("pin_memory", idist.device() == "cuda")

logger.info("Use data loader kwargs for dataset '{}': \n\t{}".format(repr(dataset)[:20].strip(), kwargs))
dataloader = DataLoader(dataset, **kwargs)
Expand Down
2 changes: 2 additions & 0 deletions tests/ignite/distributed/test_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,8 @@ def _test_auto_dataloader(ws, nproc, sampler_name=None, dl_type=DataLoader):
else:
sampler_type = DistributedSampler if sampler is None else DistributedProxySampler
assert isinstance(dataloader.sampler, sampler_type)
if isinstance(dataloader, DataLoader):
assert dataloader.pin_memory == (data.device == "cuda")


def _test_auto_model_optimizer(ws, device):
Expand Down