Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions ignite/contrib/handlers/trains_logger.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import numbers
import os
import tempfile
import warnings
Expand Down Expand Up @@ -146,10 +147,15 @@ def __call__(self, engine, logger, event_name):
)

for key, value in metrics.items():
if isinstance(value, (float, int)):
if isinstance(value, numbers.Number) or isinstance(value, torch.Tensor) and value.ndimension() == 0:
logger.trains_logger.report_scalar(title=self.tag, series=key, iteration=global_step, value=value)
elif isinstance(value, torch.Tensor) and value.ndimension() == 1:
for i, v in enumerate(value):
logger.trains_logger.report_scalar(
title="{}/{}".format(self.tag, key), series=str(i), iteration=global_step, value=v.item()
)
else:
warnings.warn("TrainsLogger output_handler can not log " "metrics value type {}".format(type(value)))
warnings.warn("TrainsLogger output_handler can not log metrics value type {}".format(type(value)))


class OptimizerParamsHandler(BaseOptimizerParamsHandler):
Expand Down
20 changes: 19 additions & 1 deletion tests/ignite/contrib/handlers/test_trains_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ def test_output_handler_metric_names(dirname):
mock_logger = MagicMock(spec=TrainsLogger)
mock_logger.trains_logger = MagicMock()

with pytest.warns(UserWarning):
with pytest.warns(UserWarning, match=r"TrainsLogger output_handler can not log metrics value type"):
wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED)

assert mock_logger.trains_logger.report_scalar.call_count == 1
Expand Down Expand Up @@ -147,6 +147,24 @@ def test_output_handler_metric_names(dirname):
any_order=True,
)

# log a torch vector
wrapper = OutputHandler("tag", metric_names="all")
mock_logger = MagicMock(spec=TrainsLogger)
mock_logger.trains_logger = MagicMock()

mock_engine = MagicMock()
vector = torch.tensor([0.1, 0.2, 0.1, 0.2, 0.33])
mock_engine.state = State(metrics={"vector": vector})
mock_engine.state.iteration = 5

wrapper(mock_engine, mock_logger, Events.ITERATION_STARTED)

assert mock_logger.trains_logger.report_scalar.call_count == 5
mock_logger.trains_logger.report_scalar.assert_has_calls(
[call(title="tag/vector", series=str(i), iteration=5, value=vector[i].item()) for i in range(5)],
any_order=True,
)


def test_output_handler_both(dirname):

Expand Down