Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 1 addition & 3 deletions ignite/distributed/comp_models/xla.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,9 +113,7 @@ def spawn(
backend: str = XLA_TPU,
**kwargs
):
import os

if "COLAB_TPU_ADDR" in os.environ:
if "start_method" not in kwargs:
kwargs["start_method"] = "fork"

xmp.spawn(
Expand Down
8 changes: 6 additions & 2 deletions ignite/distributed/launcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,6 +150,7 @@ def training(local_rank, config, **kwargs):
(`nccl`, `gloo`). Mandatory argument if ``nnodes`` is specified and larger than one.
master_port (int, optional): optional argument, master node port for torch native backends
(`nccl`, `gloo`). Mandatory argument if ``master_addr`` is specified.
**spawn_kwargs: kwargs to ``idist.spawn`` function.
"""

def __init__(
Expand All @@ -160,6 +161,7 @@ def __init__(
node_rank: Optional[int] = None,
master_addr: Optional[str] = None,
master_port: Optional[str] = None,
**spawn_kwargs
):
if backend is not None:
if backend not in idist.available_backends():
Expand All @@ -183,15 +185,16 @@ def __init__(
if self.backend is not None:
if nproc_per_node is not None:
self._spawn_params = self._setup_spawn_params(
nproc_per_node, nnodes, node_rank, master_addr, master_port
nproc_per_node, nnodes, node_rank, master_addr, master_port, **spawn_kwargs
)

if self._spawn_params is not None:
self.logger.info("Initialized distributed launcher with backend: '{}'".format(self.backend))
msg = "\n\t".join(["{}: {}".format(k, v) for k, v in self._spawn_params.items() if v is not None])
self.logger.info("- Parameters to spawn processes: \n\t{}".format(msg))

def _setup_spawn_params(self, nproc_per_node, nnodes, node_rank, master_addr, master_port):
@staticmethod
def _setup_spawn_params(nproc_per_node, nnodes, node_rank, master_addr, master_port, **spawn_kwargs):
if nproc_per_node < 1:
raise ValueError("Argument nproc_per_node should positive, but given {}".format(nproc_per_node))
if nnodes is None:
Expand All @@ -218,6 +221,7 @@ def _setup_spawn_params(self, nproc_per_node, nnodes, node_rank, master_addr, ma
"master_addr": master_addr,
"master_port": master_port,
}
params.update(spawn_kwargs)
return {k: v for k, v in params.items() if v is not None}

def run(self, func: Callable, *args, **kwargs):
Expand Down
18 changes: 18 additions & 0 deletions tests/ignite/distributed/test_launcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,3 +158,21 @@ def test_idist_parallel_no_dist():
device = "cuda" if torch.cuda.is_available() else "cpu"
with idist.Parallel(backend=None) as parallel:
parallel.run(_test_func, ws=1, device=device)


@pytest.mark.tpu
@pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars")
@pytest.mark.skipif(not has_xla_support, reason="Skip if no PyTorch XLA package")
def test_idist_parallel_spawn_params():

res = idist.Parallel._setup_spawn_params(
nproc_per_node=8, nnodes=None, node_rank=None, master_addr=None, master_port=None, start_method="fork"
)
assert "nproc_per_node" in res and res["nproc_per_node"] == 8
assert "start_method" in res and res["start_method"] == "fork"

with idist.Parallel(backend="xla-tpu", nproc_per_node=8, start_method="fork") as parallel:
assert parallel.backend == "xla-tpu"
res = parallel._spawn_params
assert "nproc_per_node" in res and res["nproc_per_node"] == 8
assert "start_method" in res and res["start_method"] == "fork"