Skip to content

[Distributed] P2P Operations on NCCL do not respect tag #125079

Closed
@andoorve

Description

@andoorve

🐛 Describe the bug

When using NCCL with Send/Recv operations we expect the tag argument to be respected for send/recv matching. This doesn't occur in practice.

Example program:

import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def run(rank, size):
    """ Distributed function to be implemented later. """
    device = torch.device(f"cuda:{rank}")
    if rank == 0:
        tens = torch.ones([33, 4096], dtype=torch.bfloat16, device=device)
        tens2 = 2 * torch.ones([33, 4096], dtype=torch.bfloat16, device=device)
        dist.send(tens2, dst=1, tag=0)
        dist.send(tens, dst=1, tag=1)
    else:
        tens = torch.empty([33, 4096], dtype=torch.bfloat16, device=device)
        tens2 = torch.empty([33, 4096], dtype=torch.bfloat16, device=device)
        dist.recv(tens, src=0, tag=1)
        dist.recv(tens2, src=0, tag=0)
        print (f'{tens}, {tens2}')

def init_process(rank, size, fn, backend='nccl'):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = '127.0.0.1'
    os.environ['MASTER_PORT'] = '29501'
    dist.init_process_group(backend, rank=rank, world_size=size)
    fn(rank, size)

if __name__ == "__main__":
    size = 2
    processes = []
    mp.set_start_method("spawn")
    for rank in range(size):
        p = mp.Process(target=init_process, args=(rank, size, run))
        p.start()
        processes.append(p)

    for p in processes:
        p.join()

Here we expect tens to be a tensor of 1s and tens2 to be a tensor of 2s when received, or at least a hang. The opposite happens.

Should be the exact same issue as this: #94819 but for send/recv instead of isend and irecv.

Versions

Collecting environment information...
PyTorch version: 2.2.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.0
Libc version: glibc-2.35

Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.5.0-1016-gcp-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.3.107
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA L4
GPU 1: NVIDIA L4
GPU 2: NVIDIA L4
GPU 3: NVIDIA L4

Nvidia driver version: 545.23.08
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.0.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.0.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      46 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             96
On-line CPU(s) list:                0-95
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Xeon(R) CPU @ 2.20GHz
CPU family:                         6
Model:                              85
Thread(s) per core:                 2
Core(s) per socket:                 24
Socket(s):                          2
Stepping:                           7
BogoMIPS:                           4400.42
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          1.5 MiB (48 instances)
L1i cache:                          1.5 MiB (48 instances)
L2 cache:                           48 MiB (48 instances)
L3 cache:                           77 MiB (2 instances)
NUMA node(s):                       2
NUMA node0 CPU(s):                  0-23,48-71
NUMA node1 CPU(s):                  24-47,72-95
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:             Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced / Automatic IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; Clear CPU buffers; SMT Host state unknown

Versions of relevant libraries:
[pip3] mypy==1.9.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] torch==2.2.1
[pip3] triton==2.2.0
[conda] Could not collect

cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu @fegin @XilunWu @wanchaol @fduwjj @wz337 @tianyu-l @wconstab @yf225 @chauhang @d4l3k

Metadata

Metadata

Assignees

No one assigned

    Labels

    module: ncclProblems related to nccl supportoncall: distributedAdd this issue/PR to distributed oncall triage queue

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions