Skip to content

Commit

Permalink
Add support for WNLI dataset with unit tests (#1724)
Browse files Browse the repository at this point in the history
* Add support for WNLI dataset + unit tests
* Add dataset documentation
* Add shuffle and sharding
* Move local to global functions + use load_from_zip
  • Loading branch information
vcm2114 authored Jun 1, 2022
1 parent 932d776 commit 73bf4fa
Show file tree
Hide file tree
Showing 4 changed files with 191 additions and 0 deletions.
5 changes: 5 additions & 0 deletions docs/source/datasets.rst
Original file line number Diff line number Diff line change
Expand Up @@ -97,6 +97,11 @@ STSB

.. autofunction:: STSB

WNLI
~~~~

.. autofunction:: WNLI

YahooAnswers
~~~~~~~~~~~~

Expand Down
84 changes: 84 additions & 0 deletions test/datasets/test_wnli.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
import os
import zipfile
from collections import defaultdict
from unittest.mock import patch

from parameterized import parameterized
from torchtext.datasets.wnli import WNLI

from ..common.case_utils import TempDirMixin, zip_equal, get_random_unicode
from ..common.torchtext_test_case import TorchtextTestCase


def _get_mock_dataset(root_dir):
"""
root_dir: directory to the mocked dataset
"""
base_dir = os.path.join(root_dir, "WNLI")
temp_dataset_dir = os.path.join(base_dir, "temp_dataset_dir")
os.makedirs(temp_dataset_dir, exist_ok=True)

seed = 1
mocked_data = defaultdict(list)
for file_name in ("train.tsv", "test.tsv", "dev.tsv"):
txt_file = os.path.join(temp_dataset_dir, file_name)
with open(txt_file, "w", encoding="utf-8") as f:
f.write("index\tsentence1\tsentence2\tlabel\n")
for i in range(5):
label = seed % 2
rand_string_1 = get_random_unicode(seed)
rand_string_2 = get_random_unicode(seed + 1)
if file_name == "test.tsv":
dataset_line = (rand_string_1, rand_string_2)
f.write(f"{i}\t{rand_string_1}\t{rand_string_2}\n")
else:
dataset_line = (label, rand_string_1, rand_string_2)
f.write(f"{i}\t{rand_string_1}\t{rand_string_2}\t{label}\n")

# append line to correct dataset split
mocked_data[os.path.splitext(file_name)[0]].append(dataset_line)
seed += 1

compressed_dataset_path = os.path.join(base_dir, "WNLI.zip")
# create zip file from dataset folder
with zipfile.ZipFile(compressed_dataset_path, "w") as zip_file:
for file_name in ("train.tsv", "test.tsv", "dev.tsv"):
txt_file = os.path.join(temp_dataset_dir, file_name)
zip_file.write(txt_file, arcname=os.path.join("WNLI", file_name))

return mocked_data


class TestWNLI(TempDirMixin, TorchtextTestCase):
root_dir = None
samples = []

@classmethod
def setUpClass(cls):
super().setUpClass()
cls.root_dir = cls.get_base_temp_dir()
cls.samples = _get_mock_dataset(cls.root_dir)
cls.patcher = patch("torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True)
cls.patcher.start()

@classmethod
def tearDownClass(cls):
cls.patcher.stop()
super().tearDownClass()

@parameterized.expand(["train", "test", "dev"])
def test_wnli(self, split):
dataset = WNLI(root=self.root_dir, split=split)

samples = list(dataset)
expected_samples = self.samples[split]
for sample, expected_sample in zip_equal(samples, expected_samples):
self.assertEqual(sample, expected_sample)

@parameterized.expand(["train", "test", "dev"])
def test_wnli_split_argument(self, split):
dataset1 = WNLI(root=self.root_dir, split=split)
(dataset2,) = WNLI(root=self.root_dir, split=(split,))

for d1, d2 in zip_equal(dataset1, dataset2):
self.assertEqual(d1, d2)
2 changes: 2 additions & 0 deletions torchtext/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
from .udpos import UDPOS
from .wikitext103 import WikiText103
from .wikitext2 import WikiText2
from .wnli import WNLI
from .yahooanswers import YahooAnswers
from .yelpreviewfull import YelpReviewFull
from .yelpreviewpolarity import YelpReviewPolarity
Expand Down Expand Up @@ -57,6 +58,7 @@
"UDPOS": UDPOS,
"WikiText103": WikiText103,
"WikiText2": WikiText2,
"WNLI": WNLI,
"YahooAnswers": YahooAnswers,
"YelpReviewFull": YelpReviewFull,
"YelpReviewPolarity": YelpReviewPolarity,
Expand Down
100 changes: 100 additions & 0 deletions torchtext/datasets/wnli.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
# Copyright (c) Facebook, Inc. and its affiliates.
import os
from functools import partial

from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
_create_dataset_directory,
_wrap_split_argument,
)

if is_module_available("torchdata"):
from torchdata.datapipes.iter import FileOpener, IterableWrapper

# we import HttpReader from _download_hooks so we can swap out public URLs
# with interal URLs when the dataset is used within Facebook
from torchtext._download_hooks import HttpReader


URL = "https://dl.fbaipublicfiles.com/glue/data/WNLI.zip"

MD5 = "a1b4bd2861017d302d29e42139657a42"

NUM_LINES = {
"train": 635,
"dev": 71,
"test": 146,
}

_PATH = "WNLI.zip"

DATASET_NAME = "WNLI"

_EXTRACTED_FILES = {
"train": os.path.join("WNLI", "train.tsv"),
"dev": os.path.join("WNLI", "dev.tsv"),
"test": os.path.join("WNLI", "test.tsv"),
}


def _filepath_fn(root, x=None):
return os.path.join(root, os.path.basename(x))


def _extracted_filepath_fn(root, split, _=None):
return os.path.join(root, _EXTRACTED_FILES[split])


def _filter_fn(split, x):
return _EXTRACTED_FILES[split] in x[0]


def _modify_res(split, t):
if split == "test":
return (t[1], t[2])
else:
return (int(t[3]), t[1], t[2])


@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "dev", "test"))
def WNLI(root, split):
"""WNLI Dataset
For additional details refer to https://arxiv.org/pdf/1804.07461v3.pdf
Number of lines per split:
- train: 635
- dev: 71
- test: 146
Args:
root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache')
split: split or splits to be returned. Can be a string or tuple of strings. Default: (`train`, `dev`, `test`)
:returns: DataPipe that yields tuple of text and/or label (0 to 1). The `test` split only returns text.
:rtype: Union[(int, str, str), (str, str)]
"""
# TODO Remove this after removing conditional dependency
if not is_module_available("torchdata"):
raise ModuleNotFoundError(
"Package `torchdata` not found. Please install following instructions at `https://github.com/pytorch/data`"
)

url_dp = IterableWrapper([URL])
cache_compressed_dp = url_dp.on_disk_cache(
filepath_fn=partial(_filepath_fn, root),
hash_dict={_filepath_fn(root, URL): MD5},
hash_type="md5",
)
cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching(mode="wb", same_filepath_fn=True)

cache_decompressed_dp = cache_compressed_dp.on_disk_cache(filepath_fn=partial(_extracted_filepath_fn, root, split))
cache_decompressed_dp = (
FileOpener(cache_decompressed_dp, mode="b").load_from_zip().filter(partial(_filter_fn, split))
)
cache_decompressed_dp = cache_decompressed_dp.end_caching(mode="wb", same_filepath_fn=True)

data_dp = FileOpener(cache_decompressed_dp, encoding="utf-8")
parsed_data = data_dp.parse_csv(skip_lines=1, delimiter="\t").map(partial(_modify_res, split))
return parsed_data.shuffle().set_shuffle(False).sharding_filter()

0 comments on commit 73bf4fa

Please sign in to comment.