Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added new SST2 dataset class #1410

Merged
merged 15 commits into from
Oct 18, 2021
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,9 @@ tqdm
# Downloading data and other files
requests

# Torchdata
git+https://github.com/pytorch/data.git

# Optional NLP tools
nltk
spacy
Expand Down
5 changes: 4 additions & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,10 @@ def run(self):
license='BSD',

install_requires=[
'tqdm', 'requests', pytorch_package_dep, 'numpy'
'tqdm', 'requests', pytorch_package_dep, 'numpy', 'torchdata==0.1.0a0+7772406'
],
dependency_links=[
"https://github.com/pytorch/data.git#egg=torchdata",
],
python_requires='>=3.5',
classifiers=[
Expand Down
32 changes: 32 additions & 0 deletions test/experimental/test_datasets.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
import hashlib
import json

from torchtext.experimental.datasets import sst2

from ..common.torchtext_test_case import TorchtextTestCase


class TestDataset(TorchtextTestCase):
def test_sst2_dataset(self):
split = ("train", "dev", "test")
train_dp, dev_dp, test_dp = sst2.SST2(split=split)

# verify hashes of first line in dataset
self.assertEqual(
hashlib.md5(
json.dumps(next(iter(train_dp)), sort_keys=True).encode("utf-8")
).hexdigest(),
sst2._FIRST_LINE_MD5["train"],
)
self.assertEqual(
hashlib.md5(
json.dumps(next(iter(dev_dp)), sort_keys=True).encode("utf-8")
).hexdigest(),
sst2._FIRST_LINE_MD5["dev"],
)
self.assertEqual(
hashlib.md5(
json.dumps(next(iter(test_dp)), sort_keys=True).encode("utf-8")
).hexdigest(),
sst2._FIRST_LINE_MD5["test"],
)
3 changes: 2 additions & 1 deletion torchtext/experimental/datasets/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from . import raw
from . import sst2

__all__ = ['raw']
__all__ = ["raw", "sst2"]
93 changes: 93 additions & 0 deletions torchtext/experimental/datasets/sst2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
# Copyright (c) Facebook, Inc. and its affiliates.
import os

from torchdata.datapipes.iter import (
HttpReader,
IterableWrapper,
)
from torchtext.data.datasets_utils import (
_add_docstring_header,
_create_dataset_directory,
_wrap_split_argument,
)


NUM_LINES = {
"train": 67349,
"dev": 872,
"test": 1821,
}

MD5 = "9f81648d4199384278b86e315dac217c"
URL = "https://dl.fbaipublicfiles.com/glue/data/SST-2.zip"

_EXTRACTED_FILES = {
"train": f"{os.sep}".join(["SST-2", "train.tsv"]),
"dev": f"{os.sep}".join(["SST-2", "dev.tsv"]),
"test": f"{os.sep}".join(["SST-2", "test.tsv"]),
}

_EXTRACTED_FILES_MD5 = {
"train": "da409a0a939379ed32a470bc0f7fe99a",
"dev": "268856b487b2a31a28c0a93daaff7288",
"test": "3230e4efec76488b87877a56ae49675a",
}

_FIRST_LINE_MD5 = {
"train": "2552b8cecd57b2e022ef23411c688fa8",
"dev": "1b0ffd6aa5f2bf0fd9840a5f6f1a9f07",
"test": "f838c81fe40bfcd7e42e9ffc4dd004f7",
}

DATASET_NAME = "SST2"


@_add_docstring_header(num_lines=NUM_LINES, num_classes=2)
@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "dev", "test"))
def SST2(root, split):
return SST2Dataset(root, split).get_datapipe()


class SST2Dataset:
"""The SST2 dataset uses torchdata datapipes end-2-end.
To avoid download at every epoch, we cache the data on-disk
We do sanity check on dowloaded and extracted data
"""

def __init__(self, root, split):
self.root = root
self.split = split

def get_datapipe(self):
# cache data on-disk
cache_dp = IterableWrapper([URL]).on_disk_cache(
HttpReader,
op_map=lambda x: (x[0], x[1].read()),
filepath_fn=lambda x: os.path.join(self.root, os.path.basename(x)),
)
Comment on lines +76 to +80
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I am adding a PR to improve the interface of on_disk_cache. I will let you know when it's landed.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sure that sounds great!


# do sanity check
check_cache_dp = cache_dp.check_hash(
{os.path.join(self.root, "SST-2.zip"): MD5}, "md5"
)

# extract data from zip
extracted_files = check_cache_dp.read_from_zip()

# Filter extracted files and do sanity check
check_extracted_files = extracted_files.filter(
lambda x: self.split in x[0]
).check_hash(
{
os.path.join(
self.root, _EXTRACTED_FILES[self.split]
): _EXTRACTED_FILES_MD5[self.split]
},
"md5",
)

# Parse CSV file and yield data samples
return check_extracted_files.parse_csv(skip_lines=1, delimiter="\t").map(
lambda x: (x[0], x[1])
)