Skip to content

Commit

Permalink
Add support to Qwen2-0.5B and Qwen2-1.5B. (#1247)
Browse files Browse the repository at this point in the history
  • Loading branch information
fyabc authored Aug 6, 2024
1 parent 9fd5d01 commit 5c7246e
Show file tree
Hide file tree
Showing 17 changed files with 968 additions and 34 deletions.
75 changes: 75 additions & 0 deletions recipes/configs/qwen2/0.5B_full.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# Config for multi-device full finetuning in full_finetune_distributed.py
# using a Qwen2 0.5B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2-0.5B-Instruct --output-dir /tmp/Qwen2-0.5B-Instruct --ignore-patterns ""
#
# To launch on 4 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 4 full_finetune_distributed --config qwen2/0.5B_full
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 4 full_finetune_distributed --config qwen2/0.5B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# Single device full finetuning requires more memory optimizations. It's
# best to use 0.5B_full.yaml for those cases

# Tokenizer
tokenizer:
_component_: torchtune.models.qwen2.qwen2_tokenizer
path: /tmp/Qwen2-0.5B-Instruct/vocab.json
merges_file: /tmp/Qwen2-0.5B-Instruct/merges.txt

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.qwen2.qwen2_0_5b

checkpointer:
_component_: torchtune.utils.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2-0.5B-Instruct
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Qwen2-0.5B-Instruct-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 2
epochs: 1
optimizer:
_component_: torch.optim.AdamW
lr: 5e-6
loss:
_component_: torch.nn.CrossEntropyLoss
max_steps_per_epoch: null
gradient_accumulation_steps: 16


# Training env
device: cuda

# Memory management
enable_activation_checkpointing: True
memory_efficient_fsdp_wrap: False

# Reduced precision
dtype: bf16

# Logging
metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/Qwen2-0.5B-Instruct-finetune
log_every_n_steps: 1
log_peak_memory_stats: False
77 changes: 77 additions & 0 deletions recipes/configs/qwen2/0.5B_full_single_device.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# Config for single device full finetuning in full_finetune_single_device.py
# using a Qwen2 0.5B
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2-0.5B-Instruct --output-dir /tmp/Qwen2-0.5B-Instruct --ignore-patterns ""
#
# The default config uses an optimizer from bitsandbytes. If you do not have it installed,
# you can install it with
# pip install bitsandbytes
#
# To launch on a single device, run the following command from root:
# tune run full_finetune_single_device --config qwen2/0.5B_full_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run full_finetune_single_device --config qwen2/0.5B_full_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.

# Tokenizer
tokenizer:
_component_: torchtune.models.qwen2.qwen2_tokenizer
path: /tmp/Qwen2-0.5B-Instruct/vocab.json
merges_file: /tmp/Qwen2-0.5B-Instruct/merges.txt

# Dataset
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
seed: null
shuffle: True

# Model Arguments
model:
_component_: torchtune.models.qwen2.qwen2_0_5b

checkpointer:
_component_: torchtune.utils.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2-0.5B-Instruct
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Qwen2-0.5B-Instruct-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Fine-tuning arguments
batch_size: 2
epochs: 1
optimizer:
_component_: bitsandbytes.optim.PagedAdamW
lr: 5e-6
optimizer_in_bwd: True
loss:
_component_: torch.nn.CrossEntropyLoss
max_steps_per_epoch: null
gradient_accumulation_steps: 16
compile: False

# Training environment
device: cuda

# Memory management
enable_activation_checkpointing: True

# Reduced precision
dtype: bf16

# Logging
metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
output_dir: /tmp/Qwen2-0.5B-Instruct-finetune
log_every_n_steps: 1
log_peak_memory_stats: False
108 changes: 108 additions & 0 deletions recipes/configs/qwen2/0.5B_lora.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
# Config for multi-device LoRA finetuning in lora_finetune_distributed.py
# using a Qwen2 0.5B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2-0.5B-Instruct --output-dir /tmp/Qwen2-0.5B-Instruct --ignore-patterns ""
#
# To launch on 2 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config qwen2/0.5B_lora
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config qwen2/0.5B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# For single device LoRA finetuning please use 0.5B_lora_single_device.yaml
# or 0.5B_qlora_single_device.yaml


# Model Arguments
model:
_component_: torchtune.models.qwen2.lora_qwen2_0_5b
lora_attn_modules: ['q_proj', 'v_proj']
apply_lora_to_mlp: False
apply_lora_to_output: False
lora_rank: 8
lora_alpha: 16

tokenizer:
_component_: torchtune.models.qwen2.qwen2_tokenizer
path: /tmp/Qwen2-0.5B-Instruct/vocab.json
merges_file: /tmp/Qwen2-0.5B-Instruct/merges.txt

checkpointer:
_component_: torchtune.utils.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2-0.5B-Instruct
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Qwen2-0.5B-Instruct-lora-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
seed: null
shuffle: True
batch_size: 2

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.modules.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torch.nn.CrossEntropyLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 32

# Logging
output_dir: /tmp/Qwen2-0.5B-Instruct-lora-finetune
metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: False

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: False

# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.utils.setup_torch_profiler

enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1
106 changes: 106 additions & 0 deletions recipes/configs/qwen2/0.5B_lora_single_device.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# Config for single device LoRA finetuning in lora_finetune_single_device.py
# using a Qwen2 0.5B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download Qwen/Qwen2-0.5B-Instruct --output-dir /tmp/Qwen2-0.5B-Instruct --ignore-patterns ""
#
# To launch on a single device, run the following command from root:
# tune run lora_finetune_single_device --config qwen2/0.5B_lora_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run lora_finetune_single_device --config qwen2/0.5B_lora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.


# Model Arguments
model:
_component_: torchtune.models.qwen2.lora_qwen2_0_5b
lora_attn_modules: ['q_proj', 'v_proj']
apply_lora_to_mlp: False
apply_lora_to_output: False
lora_rank: 8
lora_alpha: 16

tokenizer:
_component_: torchtune.models.qwen2.qwen2_tokenizer
path: /tmp/Qwen2-0.5B-Instruct/vocab.json
merges_file: /tmp/Qwen2-0.5B-Instruct/merges.txt

checkpointer:
_component_: torchtune.utils.FullModelHFCheckpointer
checkpoint_dir: /tmp/Qwen2-0.5B-Instruct
checkpoint_files: [
model.safetensors
]
recipe_checkpoint: null
output_dir: /tmp/Qwen2-0.5B-Instruct-lora-finetune
model_type: QWEN2
resume_from_checkpoint: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
seed: null
shuffle: True
batch_size: 2

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.modules.get_cosine_schedule_with_warmup
num_warmup_steps: 100

loss:
_component_: torch.nn.CrossEntropyLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 64
compile: False

# Logging
output_dir: /tmp/Qwen2-0.5B-Instruct-lora-finetune
metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: False

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: True

# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.utils.setup_torch_profiler
enabled: False

#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs

#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True

#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False

# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1
Loading

0 comments on commit 5c7246e

Please sign in to comment.