-
Notifications
You must be signed in to change notification settings - Fork 430
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add support to Qwen2-0.5B and Qwen2-1.5B. (#1247)
- Loading branch information
Showing
17 changed files
with
968 additions
and
34 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
# Config for multi-device full finetuning in full_finetune_distributed.py | ||
# using a Qwen2 0.5B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download Qwen/Qwen2-0.5B-Instruct --output-dir /tmp/Qwen2-0.5B-Instruct --ignore-patterns "" | ||
# | ||
# To launch on 4 devices, run the following command from root: | ||
# tune run --nnodes 1 --nproc_per_node 4 full_finetune_distributed --config qwen2/0.5B_full | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nnodes 1 --nproc_per_node 4 full_finetune_distributed --config qwen2/0.5B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works best when the model is being fine-tuned on 2+ GPUs. | ||
# Single device full finetuning requires more memory optimizations. It's | ||
# best to use 0.5B_full.yaml for those cases | ||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.qwen2.qwen2_tokenizer | ||
path: /tmp/Qwen2-0.5B-Instruct/vocab.json | ||
merges_file: /tmp/Qwen2-0.5B-Instruct/merges.txt | ||
|
||
# Dataset | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
seed: null | ||
shuffle: True | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.qwen2.qwen2_0_5b | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Qwen2-0.5B-Instruct | ||
checkpoint_files: [ | ||
model.safetensors | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Qwen2-0.5B-Instruct-finetune | ||
model_type: QWEN2 | ||
resume_from_checkpoint: False | ||
|
||
# Fine-tuning arguments | ||
batch_size: 2 | ||
epochs: 1 | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
lr: 5e-6 | ||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 16 | ||
|
||
|
||
# Training env | ||
device: cuda | ||
|
||
# Memory management | ||
enable_activation_checkpointing: True | ||
memory_efficient_fsdp_wrap: False | ||
|
||
# Reduced precision | ||
dtype: bf16 | ||
|
||
# Logging | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
output_dir: /tmp/Qwen2-0.5B-Instruct-finetune | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: False |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
# Config for single device full finetuning in full_finetune_single_device.py | ||
# using a Qwen2 0.5B | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download Qwen/Qwen2-0.5B-Instruct --output-dir /tmp/Qwen2-0.5B-Instruct --ignore-patterns "" | ||
# | ||
# The default config uses an optimizer from bitsandbytes. If you do not have it installed, | ||
# you can install it with | ||
# pip install bitsandbytes | ||
# | ||
# To launch on a single device, run the following command from root: | ||
# tune run full_finetune_single_device --config qwen2/0.5B_full_single_device | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run full_finetune_single_device --config qwen2/0.5B_full_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works only for training on single device. | ||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.qwen2.qwen2_tokenizer | ||
path: /tmp/Qwen2-0.5B-Instruct/vocab.json | ||
merges_file: /tmp/Qwen2-0.5B-Instruct/merges.txt | ||
|
||
# Dataset | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
seed: null | ||
shuffle: True | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.qwen2.qwen2_0_5b | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Qwen2-0.5B-Instruct | ||
checkpoint_files: [ | ||
model.safetensors | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Qwen2-0.5B-Instruct-finetune | ||
model_type: QWEN2 | ||
resume_from_checkpoint: False | ||
|
||
# Fine-tuning arguments | ||
batch_size: 2 | ||
epochs: 1 | ||
optimizer: | ||
_component_: bitsandbytes.optim.PagedAdamW | ||
lr: 5e-6 | ||
optimizer_in_bwd: True | ||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 16 | ||
compile: False | ||
|
||
# Training environment | ||
device: cuda | ||
|
||
# Memory management | ||
enable_activation_checkpointing: True | ||
|
||
# Reduced precision | ||
dtype: bf16 | ||
|
||
# Logging | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
output_dir: /tmp/Qwen2-0.5B-Instruct-finetune | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: False |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
# Config for multi-device LoRA finetuning in lora_finetune_distributed.py | ||
# using a Qwen2 0.5B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download Qwen/Qwen2-0.5B-Instruct --output-dir /tmp/Qwen2-0.5B-Instruct --ignore-patterns "" | ||
# | ||
# To launch on 2 devices, run the following command from root: | ||
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config qwen2/0.5B_lora | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config qwen2/0.5B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works best when the model is being fine-tuned on 2+ GPUs. | ||
# For single device LoRA finetuning please use 0.5B_lora_single_device.yaml | ||
# or 0.5B_qlora_single_device.yaml | ||
|
||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.qwen2.lora_qwen2_0_5b | ||
lora_attn_modules: ['q_proj', 'v_proj'] | ||
apply_lora_to_mlp: False | ||
apply_lora_to_output: False | ||
lora_rank: 8 | ||
lora_alpha: 16 | ||
|
||
tokenizer: | ||
_component_: torchtune.models.qwen2.qwen2_tokenizer | ||
path: /tmp/Qwen2-0.5B-Instruct/vocab.json | ||
merges_file: /tmp/Qwen2-0.5B-Instruct/merges.txt | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Qwen2-0.5B-Instruct | ||
checkpoint_files: [ | ||
model.safetensors | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Qwen2-0.5B-Instruct-lora-finetune | ||
model_type: QWEN2 | ||
resume_from_checkpoint: False | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
weight_decay: 0.01 | ||
lr: 3e-4 | ||
lr_scheduler: | ||
_component_: torchtune.modules.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 32 | ||
|
||
# Logging | ||
output_dir: /tmp/Qwen2-0.5B-Instruct-lora-finetune | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: False | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: False | ||
|
||
# Show case the usage of pytorch profiler | ||
# Set enabled to False as it's only needed for debugging training | ||
profiler: | ||
_component_: torchtune.utils.setup_torch_profiler | ||
|
||
enabled: False | ||
|
||
#Output directory of trace artifacts | ||
output_dir: ${output_dir}/profiling_outputs | ||
|
||
#`torch.profiler.ProfilerActivity` types to trace | ||
cpu: True | ||
cuda: True | ||
|
||
#trace options passed to `torch.profiler.profile` | ||
profile_memory: False | ||
with_stack: False | ||
record_shapes: True | ||
with_flops: False | ||
|
||
# `torch.profiler.schedule` options: | ||
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat | ||
wait_steps: 5 | ||
warmup_steps: 5 | ||
active_steps: 2 | ||
num_cycles: 1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# Config for single device LoRA finetuning in lora_finetune_single_device.py | ||
# using a Qwen2 0.5B model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download Qwen/Qwen2-0.5B-Instruct --output-dir /tmp/Qwen2-0.5B-Instruct --ignore-patterns "" | ||
# | ||
# To launch on a single device, run the following command from root: | ||
# tune run lora_finetune_single_device --config qwen2/0.5B_lora_single_device | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run lora_finetune_single_device --config qwen2/0.5B_lora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works only for training on single device. | ||
|
||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.qwen2.lora_qwen2_0_5b | ||
lora_attn_modules: ['q_proj', 'v_proj'] | ||
apply_lora_to_mlp: False | ||
apply_lora_to_output: False | ||
lora_rank: 8 | ||
lora_alpha: 16 | ||
|
||
tokenizer: | ||
_component_: torchtune.models.qwen2.qwen2_tokenizer | ||
path: /tmp/Qwen2-0.5B-Instruct/vocab.json | ||
merges_file: /tmp/Qwen2-0.5B-Instruct/merges.txt | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Qwen2-0.5B-Instruct | ||
checkpoint_files: [ | ||
model.safetensors | ||
] | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Qwen2-0.5B-Instruct-lora-finetune | ||
model_type: QWEN2 | ||
resume_from_checkpoint: False | ||
|
||
# Dataset and Sampler | ||
dataset: | ||
_component_: torchtune.datasets.alpaca_cleaned_dataset | ||
seed: null | ||
shuffle: True | ||
batch_size: 2 | ||
|
||
# Optimizer and Scheduler | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
weight_decay: 0.01 | ||
lr: 3e-4 | ||
lr_scheduler: | ||
_component_: torchtune.modules.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
|
||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
|
||
# Training | ||
epochs: 1 | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 64 | ||
compile: False | ||
|
||
# Logging | ||
output_dir: /tmp/Qwen2-0.5B-Instruct-lora-finetune | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.DiskLogger | ||
log_dir: ${output_dir} | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: False | ||
|
||
# Environment | ||
device: cuda | ||
dtype: bf16 | ||
enable_activation_checkpointing: True | ||
|
||
# Show case the usage of pytorch profiler | ||
# Set enabled to False as it's only needed for debugging training | ||
profiler: | ||
_component_: torchtune.utils.setup_torch_profiler | ||
enabled: False | ||
|
||
#Output directory of trace artifacts | ||
output_dir: ${output_dir}/profiling_outputs | ||
|
||
#`torch.profiler.ProfilerActivity` types to trace | ||
cpu: True | ||
cuda: True | ||
|
||
#trace options passed to `torch.profiler.profile` | ||
profile_memory: False | ||
with_stack: False | ||
record_shapes: True | ||
with_flops: False | ||
|
||
# `torch.profiler.schedule` options: | ||
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat | ||
wait_steps: 5 | ||
warmup_steps: 5 | ||
active_steps: 2 | ||
num_cycles: 1 |
Oops, something went wrong.